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1 Introduction

Many differentially private algorithms operate in the central model, also known as the trusted curator
model. Here, a single analyzer has raw user data and its computations are insensitive to any one user’s
data point. But the fact that all users give their data to one party means that there is a single point of
failure: the privacy of all users is contingent on the integrity of the analyzer.

There are a number of ways to model weaker trust in the analyzer. Perhaps the most well-known
among them is the local model. Here, the dataset is a distributed object where each user holds a single
element. To preserve their own privacy, each user randomizes their data point and submits the output
to the analyzer. Because the signal from each user is hidden behind noise, there are a number of lower
bounds on the error of locally private protocols that strongly separate the local model from the central
model [15, 19, 12, 1, 42]. That is, the analyzer needs more samples (users) to achieve the same accuracy as
in the central model. Locally private protocols are also more vulnerable to manipulation: by sending
carefully distributed messages, malicious users can skew tests and estimates of distributions beyond
simply changing the input of the protocol [24]. These negative results lead us to ask the following
question:

Can we achieve the accuracy that is possible with centrally private algorithms
from a trust assumption that is close to locally private protocols?

Research into the shuffle model has given an answer to this question. Like the local model, users in a
shuffle protocol produce messages by feeding their data into a local randomizer. But now they trust some
entity to apply a uniformly random permutation on all user messages. We assume that the adversary’s
view is limited to that permutation, so no message can be linked back to its sender.

This survey gives an overview of the recent surge of work in the shuffle model. We pay particular
attention to results that characterize the strength of the model relative to the local and central models.

Outline. In Section 2, we establish the requisite privacy and model definitions. In Section 3, we contrast
local model lower bounds with shuffle model upper bounds: there are problems for which additive error
and sample complexity are much lower in the shuffle model. Then, in Section 4, we give techniques to
show that the shuffle model (under natural constraints) is weaker than the central model. Finally, Section
5 gives a glimpse of what is possible in interactive variants of the model.

All these results focus on the accuracy of differentially private shuffle protocols. In Appendix A, we
explore alternative models and compare them with the shuffle model. Appendix B contains an overview
of shuffle protocols that are designed with the aim of reducing costs of transmission (e.g. number of
messages and total number of bits consumed by messages). And Appendix C highlights two unusual
shuffle protocols which pose a challenge to proving lower bounds.
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Author’s Note. Much of this survey is derived from the author’s PhD. thesis. Notation and definition
changes have been introduced to simplify the presentation

2 Preliminaries

We will use the notation [d] = {1,2, . . . ,d}, N = {1,2, . . .}. A dataset ~x ∈ X n is an ordered tuple of n rows
where each row is drawn from a data universe X and corresponds to the data of one user. Two datasets
~x,~x ′ ∈ X n are considered neighbors if they differ in at most one row. This is denoted as ~x ∼ ~x ′ .

Definition 1 (Differential Privacy [30]). An algorithmM : X n→Z satisfies (ε,δ)-differential privacy if, for
every pair of neighboring datasets ~x and ~x′ and every subset T ⊂ Z,

P

[
M(~x) ∈ T

]
≤ eε ·P

[
M(~x ′) ∈ T

]
+ δ.

When δ > 0, we say M satisfies approximate differential privacy. When δ = 0, M satisfies pure
differential privacy and we omit the δ parameter.

Because this definition assumes that the algorithmM has “central” access to compute on the entire
raw dataset, we sometimes call this central differential privacy.

The binomial mechanism is a centrally private algorithm that has proven to be useful in the design and
analysis of shuffle protocols.

Lemma 2 (Binomial Mechanism [29, 36]). Let f : X n→Z be a 1-sensitive function, i.e. |f (~x)− f (~x ′)| ≤ 1 for
all neighboring datasets ~x,~x ′ ∈ X n. There is a constant κ such that, for any ` ∈N, p ∈ (0,1), and ε,δ ∈ (0,1)
satisfying

` ·min(p,1− p) ≥ κ

ε2
· log 1

δ
,

the algorithm that samples η ∼ Bin(`,p) and outputs f (~x) + η is (ε,δ)-differentially private. The error is

O
(
1
ε

√
log 1

δ

)
with constant probability.

2.1 The Local Model

We first establish the local model. Here, the dataset is a distributed object where each of n users holds
a single row. Each user i provides their data point as input to a randomizing function R and publishes
the outputs for some analyzer to compute on.

Definition 3 (Local Model [50, 33]). A protocol P in the local model consists of two randomized algorithms:

• A randomizer R : X × {0,1}r →Y mapping a data point and public random bits to a message

• An analyzer A : Yn × {0,1}r →Z that computes on a vector of messages and public random bits

We define its execution on input ~x ∈ X n as

P (~x) :=A(R(x1,W ), . . . ,R(xn,W )),

where W is a uniformly random member of {0,1}r .

It is possible to extend the model definition to allow for multiple rounds of communication. To ease
readability, we defer discussion of interactive protocols (local and shuffle) to a later section.

Suppose the privacy adversary wishes to target user i. In this model, the adversary’s view is limited
to the output of R(xi ,W ) so we impose the privacy constraint on R.

Definition 4 (DP in the Local Model [30, 43]). A protocol P = (R,A) is (ε,δ)-local differentially private if,
for all w ∈ {0,1}r , R(·,w) is (ε,δ)-differentially private. That is, the privacy guarantee is over the internal
randomness of the users’ randomizers and not the public randomness of the protocol.
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2.2 The Shuffle Model

To give intuition for the shuffle model, we start by sketching a preliminary version called the single-
message shuffle model. Like the (one-round) local model, users executeR on their data to produce messages
but users now trust a service to perform a secure shuffle on the messages. That is, an adversary’s view
is limited to a uniformly random permutation of the messages, so no message can be linked back to its
sender. Intuitively, whatever privacy guarantee is granted by R is amplified by this anonymity: to learn
about xi , an adversary has to not only recover information from one noisy message yi but somehow
identify the target message inside a vector ~y of n messages. Amplification-by-shuffling lemmas quantify
how well the privacy parameters are improved [32, 11, 34]. These lemmas provide a simple way to design
protocols in the single-message shuffle model.

But the amplification lemmas do not apply to the relaxed version of the model where each user sends
any (possibly randomized) number of messages to the shuffler. Here, we assume the shuffling prevents
messages from the same sender from being linked with one another. We give a formal definition below:

Definition 5 (Shuffle Model [16, 25]). A protocol P in the shuffle model consists of three randomized
algorithms:

• A randomizerR : X ×{0,1}r →Y ∗ mapping a data point and public random bits to (possibly variable-
length) vectors. The length of the vector is the number of messages sent. If, on any input, the
probability of sending m messages is 1, then we have an m-message protocol.

• A shuffler S : Y ∗ → Y ∗ that concatenates message vectors and then applies a uniformly random
permutation to the messages.

• An analyzer A : Y ∗ × {0,1}r →Z that computes on a permutation of messages and public random
bits.

As S is the same in every protocol, we identify each shuffle protocol by P = (R,A). We define its execution
on input ~x ∈ X n as

P (~x) :=A(S(R(x1,W ), . . . ,R(xn,W ))),

where W is again the public random string. We assume that R and A have access to n.

Remark 6. By making n accessible to the parties, we allow internal parameters to depend on n. This enables users
to evenly distribute the responsibility of adding noise.

With this setup, we use the following definition of shuffle differential privacy.

Definition 7 (DP in the Shuffle Model [25]). A shuffle protocol P = (R,A) is (ε,δ)-differentially private if,
for all w ∈ {0,1}r and all1 n ∈N, the algorithm

(S ◦Rn)(~x) := S(R(x1,w), . . . ,R(xn,w))

is (ε,δ)-differentially private.

For brevity, we typically call these protocols “shuffle private.” We will also drop the public randomness
input if it is unused.

Note that Definition 7 assumes all users follow the protocol. Ideally, distributed protocols should
still guarantee some level of privacy even when users are malicious. A simple attack is to drop out: let
S ◦Rγ ·n denote the case where a γ fraction of n users execute R but they are only given access to n (not
γ). S ◦R1·n might satisfy a particular level of differential privacy but there could be a value γ < 1 where

1Some protocols assume lower bounds on n in order to invoke concentration arguments. These bounds will typically be small.
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S ◦Rγ ·n does not.2 This motivates a definition of shuffle privacy that is robust to a malicious minority of
users:

Definition 8 (Robust DP in the Shuffle Model). A shuffle protocol is (ε,δ)-robustly differentially private
if, for all w ∈ {0,1}r , the algorithm

(S ◦Rn/2)(~x) := S(R(x1,w), . . . ,R(xn/2,w))

is (ε,δ)-differentially private.

Discussion of Definition. We have defined robustness with regard to privacy rather than accuracy. A
robustly shuffle private protocol promises its users that their privacy will not suffer much from a limited
fraction of malicious users. But it does not make any guarantees about the accuracy of the protocol; we
will state our accuracy guarantees under the assumption that all users follow the protocol.

Also, observe that robustness is not immediately implied by the basic form of shuffle privacy in
Definition 7. Appendix C describes protocols that satisfy shuffle privacy but are not robust to drop-outs.

Finally, the constant 1/2 in the definition (corresponding to the assumption of an honest majority) can
be changed to an arbitrary constant without changing the asymptotics of the upper or lower bounds.

Comparison with prior definitions. We remark that the work by Balcer, Cheu, Joseph, and Mao [8]—
which originally formalized robustness in the shuffle model—offers a definition where privacy parameters
are functions of the unknown fraction of users who are honest. The functions should be continuous
and non-increasing, meaning that the privacy guarantee gradually loosens from (ε,δ) to (O(ε),O(δ)).
Although more general, their definition demands more notation which we avoid for simplicity.

We also note that Definition 8 is essentially an adaptation of earlier work by Ács and Castelluccia [5]
on distributed differential privacy.

3 Separations between Local & Shuffle Privacy

In this section, we will introduce four problems. For each problem, we will state a lower bound in
the local model and then describe a protocol in the shuffle model that breaks through that bound. To
simplify the presentation, we will assume ε < 1 and δ =O(1/poly(n)).

3.1 Binary Sums

In this problem, each user i has a bit xi ∈ {0,1} and the objective is to compute the sum. Dating back to
Warner [50], randomized response is the canonical local protocol for this problem. The randomizer is below:

RRR(xi) :=

Ber(1/2) with probability p

xi otherwise

2Note that, with respect to differential privacy, dropping out is the worst malicious users can do. This is because adding
messages from malicious users to those from honest users is a post-processing of S ◦Rγn. If S ◦Rγn is already differentially private
for the outputs of the γn users alone, then differential privacy’s resilience to post-processing ensures that adding other messages
does not affect this guarantee. Hence, it is without loss of generality to focus on drop-out attacks.
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Local Shuffle

Error of Ω
(
1
ε

√
n
)

O
(
1
ε

)
Binary Sums [15, 19] [9, 27]

`∞-error of Ω
(
1
ε

√
n logk

)
O

(
1
ε2
log 1

δ

)
d-bin Histograms [12] [7]

Sample Complexity of Ω
(

d
α2ε2

)
O

(
d2/3

α4/3ε2/3
+ d1/2

αε + d1/2

α2

)
α-Uniformity Testing [1] [27]

Sample Complexity of Ω(`) O
(
1
ε2
log 1

δ

)
(2, `)-Pointer-Chasing [42] [7]

Table 1: Lower bounds in the local model aligned with upper bounds in the shuffle model

Let yi be the message sent by user i. Due to subsampling and noise addition, the expected value of
∑
yi

is (1− p) ·
∑
xi +np/2. The analyzer will re-center and re-scale to obtain an unbiased estimator:

ARR(~y) :=
1

1− p
(∑

yi −np/2
)

E

[
ARR(~y)

]
=

1
1− p

·
(
E

[∑
yi
]
−np/2

)
=

∑
xi

Setting p← 2/(eε +1) suffices for ε-local privacy but incurs an additive error of O(1ε
√
n). This is optimal.

Theorem 9 (Beimel et al. [15] & Chan et al. [19]). Let P be an (ε,δ)-locally private protocol. If P computes
binary sums up to additive error α with constant probability, then α =Ω(1ε

√
n).

3.1.1 Shuffling Randomized Response

Note that PRR := (RRR,ARR) can also be interpreted as a single-message shuffle protocol. Cheu et al.
[25] show that the parameter p can be chosen such that RR achieves robust shuffle privacy while also
avoiding error that scales polynomially with n.

Theorem 10 (Cheu et al. [25]). There exists a choice of p such that the shuffle protocol PRR = (RRR,ARR) is

(ε,δ)-robustly private and computes binary sums up to additive error O(1ε

√
log 1

δ ) with constant probability.

Proof. We will set p to a value Ω( 1
ε2n

log 1
δ ). If this quantity exceeds 1/2 (which occurs when n is not large

enough), p must take a different form and the analysis will naturally change; we omit this technicality for
neatness. Refer to [25] for more details.

Robust privacy: Assume without loss of generality that the honest majority is the set [n/2]. We
leverage the fact that the view of an adversary is an unordered set of bits. This object contains as much
information as the sum of those bits. More formally, given

∑n/2
i=1 yi , the adversary can simulate a sample

from S(y1, . . . , yn/2): pick a uniformly random binary string of length n/2 and sum
∑n/2
i=1 yi . This procedure

is a post-processing operation, which means we only have to ensure the privacy of
∑n/2
i=1 yi .
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By construction, some set of users H ⊂ [n/2] will report messages sampled from Ber(1/2) and the rest
will report their true values. So for any fixed setH ,

∑n/2
i=1 yi is a sample from

∑
i∈[n/2]−H xi +Bin(|H |,1/2). If

we show |H | ≥ κ
ε2
· log 1

δ where κ is the constant in Lemma 2, then we can invoke the binomial mechanism
to conclude that S ◦Rn/2 satisfies (ε,δ)-differential privacy.

Membership in H is a Bernoulli process, so |H | ∼ Bin(n/2,p). Due to our choice of p, standard
concentration arguments imply |H | ≥ κ

ε2
· log 1

δ with at least 1− δ probability.
Accuracy: We bound the protocol’s error under the assumption that all users are honest. Recall that

the output of the protocol is 1
1−p (

∑
yi − np/2). By a Chernoff bound, we have that

∑
yi − np/2 is within

O(1ε

√
log 1

δ ) of its expectation. And because 1
1−p < 2, the error of the unbiased estimator isO(1ε

√
log 1

δ ).

The Noise/Data Dichotomy. In randomized response, a message can either be a Bernoulli bit or a data
bit. Balle, Bell, Gascón, and Nissim [11] prove that this dichotomy is in fact one instance of a general
phenomenon: any locally private randomizer can be expressed as a mixture of noise and data. Specifically,
there is a “blanket” distribution B and a parameter p such that, for any input x, the distribution ofR(x) is
equal to pB+ (1− p)Dx where Dx an input-dependent distribution (identity in the case of RRR). [11] use
this to prove their amplification-by-shuffling lemma. The work by Feldman et al. [34] strengthens the
result by, roughly speaking, performing the noise/data decomposition on an input-by-input basis.

3.1.2 Other Protocols for Binary Sums

We remark that there are shuffle protocols which have properties not present in RR. These are achieved
by leveraging the power of multiple messages. Table 2 presents their most salient features.

Error No. Messages per User Advantage over RR Source

O
(
1
ε2
log 1

δ

)
2 If sum is 0, estimate is 0 with prob. 1 [7]

O
(
1
ε

√
log 1

δ

)
O

(
1
ε2
log 1

δ

)
∗ Symmetric noise [8]

O
(

1
ε3/2

√
log 1

ε

)
O

(
1
ε logn

)
δ = 0 [35]

O
(
1
ε

)
1+O

(
1
ε2n

log2 1
δ

)
∗ Optimal error [37]

O
(
1
ε

)
Õ

(
poly

(
n, 1ε

))
δ = 0 and optimal error [27]

Table 2: Shuffle protocols for binary sums. Each message is one bit. “∗” denotes a bound that holds in
expectation over the randomness of all users.

We note that the protocol by Cheu & Yan [27] pays a large price in message complexity in order to
achieve both optimal error and pure differential privacy. It is unclear if this price is necessary. Prior work
by Ghazi, Golowich, Kumar, Manurangsi, Pagh, and Velingker[35] and Ghazi, Kumar, Manurangsi, and
Pagh [37] were able to achieve only one of the two properties with much fewer messages.

3.2 Histograms

In this setting, each user has one value in the set [d]. Let cj denote the count of j in the input dataset.
The objective is to privately compute a vector (c̃1, . . . , c̃d) such that the `∞ distance from (c1, . . . , cd) is small.
In other words, the output’s maximum error should be low. This error must grow with d under local
privacy:
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Theorem 11 (Bassily & Smith [12]). Let P be an (ε,δ)-locally private protocol. If P reports a histogram that has
`∞ error α with constant probability, then α =Ω(1ε

√
n logd)

In contrast, it is possible to have error independent of d under robust shuffle privacy:

Theorem 12 (Balcer et al. [7, 8]). There is a shuffle protocol that satisfies (ε,δ)-robust differential privacy and
outputs a histogram that has `∞ error O( 1

ε2
log 1

δ ) with constant probability.

Proof. A simple way to obtain a private histogram is to perform d different binary sums. A union bound
suffices to upper bound the maximum magnitude of error. Basic composition ensures that we only pay a
factor of 2 in the privacy parameters, since changing a user’s value from x to x′ only affects the counts of
those two values.

In the shuffle model, the protocol executions can be done in parallel: each user simply labels their
messages with the execution number. To be precise, let Rj be a binary sum randomizer that counts the
occurrences of j. If Rj (xi) outputs messages a and b, user i reports the tuples (j,a) and (j,b). To estimate
cj , we can feed the messages into the corresponding analyzer function Aj .

A side-effect of this reduction approach is that the union bound may create a dependence on d. For
example, if we use RR for frequency estimation, the `∞ error after the union bound has a

√
logd term.

But we can avoid this dependence by using ZSUM, a binary sum protocol which guarantees noiseless
estimation when the input is (0, . . . ,0). As such, the elements with nonzero frequency will be the only ones
with noisy estimates. But there are only ≤ n of these, so the union bound is over ≤ n protocol executions
instead of d.

We present the local randomizer of ZSUM below. r is a parameter to be determined.

RZSUM(xi) := (xi ,Ber(r))

Robust Privacy: As with RR, it suffices to prove privacy of the sum of the messages from honest users.

But this quantity is exactly
∑n/2
i=1 xi +η, where η is drawn from the distribution Bin(n/2, r). And by Lemma

2, it suffices to choose r = 1− κ
ε2n
· log 1

δ for (O(ε),δ) privacy.3

Accuracy: Now we define the analyzer AZSUM.

AZSUM(~y) :=

0 if
∑
yi,1 + yi,2 ≤ n∑

yi,1 + yi,2 −nr otherwise

First consider the case where
∑
xi = 0. Because η ∼ Bin(n,r) has maximum value n, P

[∑
yi,1 + yi,2 ≤ n

]
=

1 so there is zero error.
Now consider the case where

∑
xi = 0. We can use a Chernoff bound to argue that |η − nr | =

O(
√
n(1− r) logn) with probability 1/10n. If we do not truncate, subtracting nr removes bias so that

error has magnitude O(
√
n(1− r) logn) =O(1ε log

1
δ ). Otherwise, error is exactly

∑
xi . But truncation will

not occur when
∑
xi =Ω( 1

ε2
log 1

δ ): in this case,
∑
xi +η >

∑
xi +n−O( 1

ε2
log 1

δ ) so that
∑
yi,1 + yi,2 > n.

In Appendix B, we give a more technically involved protocol that has improved communication
complexity. We also summarize alternative histogram protocols

3.3 Uniformity testing

In α-uniformity testing, we assume each user has an i.i.d. sample from some probability distribution
D over [d]. The objective is to report “uniform” with probability 2/3 when D = U and “not uniform”

3If n < 2κ
ε2
· log 1

δ , notice that r > 1/2. In this case, honest users can simply opt to report (0,0). Perfect privacy is achieved at the

price of error n =O( 1
ε2
· log 1

δ )
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with probability 2/3 when ‖D−U‖TV > α. The minimum number of users needed to ensure those two
conditions hold is the sample complexity of the protocol. Under local privacy, this must scale at least
linearly with d.

Theorem 13 (Acharya et al. [1]). If an ε-locally private protocol performs α-uniformity testing, then its sample
complexity is Ω(d/α2ε2).

But under robust shuffle privacy, it has been shown that the sample complexity has a leading term of
d2/3 instead of d. Balcer, Cheu, Joseph, and Mao [8] give the first protocol to achieve that bound. Canonne
and Lyu [18] streamline its analysis and describe a single-message protocol of their own using privacy
amplification. Both protocols demand approximate differential privacy.

The testing protocol by Cheu and Yan [27] attains pure differential privacy while maintaining the
same leading d2/3 term. It follows much the same “recipe” as that of Balcer et al. [8] which has two parts:
a core testing protocol whose sample complexity scales with d3/4 and a domain compression lemma
that lets us reduce the sample complexity to one that scales with d2/3. [27]’s core tester uses a pure DP
counting protocol while [8] relies on an approx. DP counting protocol.

Theorem 14 (Cheu & Yan [27]). There is a multi-message protocol that satisfies ε-robust shuffle privacy and
solves α-uniformity testing with sample complexity4

O

(
d3/4

αε
+
d1/2

α2

)
.

Proof. As previously mentioned, much of this construction is borrowed from Balcer et al. [8]. We note
that we will take n ∼ Pois(m) and upper bound m. This “Poissonization” has the effect of making the
random variables c1, . . . , cd mutually independent, which simplifies the analysis.

Cai et al. [17] give a recipe for private uniformity testing under Poissonization. First, compute a
private histogram (c̃1, . . . , c̃d). Then, compute the test statistic

Z ′(c̃1, . . . , c̃d) :=
d
m

d∑
j=1

(c̃j −m/d)2 − c̃j (1)

The final step is to prove that this statistic is small when the data distribution is uniform but large when
it is α-far from uniform, which means we can distinguish the two cases with a threshold test.

Amin et al. [6] give the following procedure to analyze Z ′ . If we let ηj be the noise in c̃j introduced by
privacy, then we rewrite Z ′ as

(1) =
d
m

d∑
j=1

(cj + ηj −m/d)2 − cj − ηj

=
d
m

d∑
j=1

(cj −m/k)2 − cj

︸                    ︷︷                    ︸
Z

+
d
m

d∑
j=1

η2j︸    ︷︷    ︸
A

+
2d
m

d∑
j=1

ηj · (cj −m/d)

︸                    ︷︷                    ︸
B

− d
m

d∑
j=1

ηj

︸   ︷︷   ︸
C

Analysis in Acharya et al. [3] imply bounds on term Z in the two relevant cases: there is a constant t and
a function f (α,m) such that

1. when ‖D−U‖TV > α, Z > t · f (α,m) with constant probability

2. when D =U, Z ≤ f (α,m) with constant probability

4Special thanks to Clément Canonne for simplifying the big-Oh expression.

8



If we prove the two statements below

(i) When ‖D−U‖TV > α, A+B+C > 0 with constant probability

(ii) When D =U, A+B+C < (t − 1) · f (α,m) with constant probability

then combining with 1. and 2. implies that the value t · f (α,m) serves as a threshold that successfully
separates the two cases with constant probability.

Balcer et al. [8] describe a binary sum protocol which produces estimates with zero-mean symmetric
noise.5 A corollary is that there is a private histogram protocol where each ηj is an independent sample
from zero-mean symmetric noise. (i) follows from the fact that the probability of ηj > 0 is 1/2. (ii) follows
from Chebyshev’s inequality and the moments of ηj .

Cheu & Yan [27] follow precisely the same template except they deploy a binary sum protocol that
satisfies pure differential privacy (δ = 0) and O(1/ε) error.

We now sketch how to reduce the sample complexity dependence on d from d3/4 to d2/3. The
technique is due to Acharya, Canonne, Han, Sun, and Tyagi [2] and Amin et al. [6] (itself a generalization
of a similar technique from Acharya et al. [1]) The idea is to reduce the size of the data universe [d] by
grouping random elements and then performing the test on the smaller universe [d̂]. The randomized
grouping also reduces testing distance—partitions may group together elements with non-uniform mass
to produce a group with near-uniform overall mass, thus hiding some of the original distance—but the
reduction in universe size outweighs this side-effect.

Lemma 15 (Domain Compression [2, 6]). Let D be a distribution over [d]. For any partition G of [d] into d̂ < d
groupsG1, . . . ,Gk̂ , let DG be the distribution over [k̂] with probability mass function P

[
DG = ĵ

]
:=

∑
j∈Gĵ P [D = j].

If G is chosen uniformly at random, then with probability ≥ 1/954 over G,

‖DG −U‖TV ≥ ‖DG −U‖TV ·

√
d̂

477
√
10d

.

Public randomness can be used to create the partition G. Users can then replace their data j with
the partition ĵ it belongs to. Running the protocol on the transformed dataset (with distance parameter

α̂ := α
√
d̂

477
√
10d

) gives the final uniformity tester below:

Theorem 16 (Cheu & Yan [27]). Fix any ε = O(1), and 0 < α < 1. There exists a protocol that is ε-robustly
shuffle private and solves α-uniformity testing with sample complexity

O

(
d2/3

α4/3ε2/3
+
d1/2

αε
+
d1/2

α2

)
.

3.4 Pointer-Chasing

The pointer chasing problem is denoted PC(k,`) where k,` ∈N. A problem instance is a set {(1,~a), (2,~b)},
where ~a and ~b are permutations of [`]. A protocol solves PC(k,`) with sample complexity n if, given n

independent samples drawn uniformly with replacement from any problem instance {(1,~a), (2,~b)}, it
outputs the k-th integer in the sequence a1,ba1 , aba1 . . . with constant probability.

Joseph, Mao, and Roth show that the sample complexity of PC(2, `) under local privacy must scale at
least linearly with `.

5At a high level, each user sends a random number of Ber(1/2) messages. The aggregate number of such bits is guaranteed to be
Θ( 1

ε2
log 1

δ ) with 1−O(δ) probability.
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Theorem 17 (Joseph et al. [42]). If an (ε,δ)-locally private protocol solves PC(2, `) with sample complexity n
then n =Ω(`).

In stark contrast, the sample complexity under shuffle privacy is independent of `:

Theorem 18 (Balcer & Cheu [7]). There is a 8 · (`!)2-message protocol that satisfies (ε,δ)-robust shuffle privacy
and solves PC(2, `) with sample complexity O( 1

ε2
log 1

δ ).

Proof. Let π(`) denote all permutations of [`]. Observe that the tuples (1,~a), (2,~b) are elements of the
universe {1,2} ×π(`) which has size 2 · `!. We can solve the problem once we have a protocol that singles
out (1,~a) and (2,~b) from the universe with constant probability.

Balcer & Cheu argue that the task of privately identifying (1,~a) and (2,~b) with constant probability is
O( 1

ε2
log 1

δ ). By a straightforward concentration argument, it suffices to have O(t) samples to ensure (1,~a)

and (2,~b) each appear ≥ t +1 times with constant probability. Taking universe size d = 4 · (`!)2, we then
use the histogram protocol built atop ZSUM (Theorem 12). When t =Ω( 1

ε2
log 1

δ ), it will report nonzero

frequencies for (1,~a) and (2,~b) but zero for every other element in the universe.

4 Separations between Central & Shuffle Privacy

There are known separations between the (one-round) shuffle model and the central model. The
proofs thus far require some natural structural constraint.

4.1 Single-message Shuffle Privacy

The first class of lower bounds hold for protocols wherein each user sends exactly one message with
probability 1.6 We begin with a negative result for bounded-value sums proved by Balle, Bell, Gascón,
and Nissim [11].

Theorem 19 (Balle et al. [11]). If a single-message shuffle protocol satisfies (ε,δ) differential privacy for n users
and computes bounded-value sums, then the mean-squared error must be Ω(n1/3).

In contrast, the centrally private Laplace mechanism achieves mean-squared error of O(1/ε2).

The techniques used to prove the above are specific to bounded-value sums. A more general technique
is to study what happens when we remove the shuffler from a single-message protocol. This takes us to
what we can call removal lemmas

Lemma 20 (Balcer & Cheu [7]). If a single-message protocol P = (R,A) satisfies pure shuffle privacy, then
removing the shuffler leaves behind a pure locally private protocol. Specifically,R must satisfy ε-differential privacy
on its own whenever the shuffle protocol as a whole is ε-private.

This means that under pure differential privacy, the single-message shuffle model is exactly equivalent
to the local model. So all separations between the central and local models hold here as well.

But it is clear from RR that this exact equivalence does not hold for approximate shuffle privacy. The
following removal lemma accommodates the relaxation.

Lemma 21 (Cheu et al. [25]). If a single-message protocol P = (R,A) satisfies (ε,δ)-shuffle privacy for n users,
then R must satisfy (ε+ lnn,δ)-differential privacy on its own.

6The lower bounds also hold in the case where users send at most one message. This is proven by a simple transformation: send
a dummy symbol ⊥ to denote the no-message event.

10



Thus, we can invoke any local model lower bound that holds for (ε+ lnn,δ) privacy. As an example,
the recipe implies the following lower bound on the error of histograms.

Theorem 22 (Ghazi et al. [36]). Any single-message protocol that satisfies (1, o(1/n))-shuffle privacy and
estimates a d-bin histogram with `∞ error n/10 must have n =Ω( logd

loglogd ).

In contrast, there is a central model algorithm where n = O(1) suffices for the same privacy and
accuracy regimes.

4.2 m-message Shuffle Privacy

A natural idea is to somehow extend the removal lemma from the single-message case to the m-
message case. But there are differentially private shuffle protocols whose randomizers are not differentially
private. For example, an adversary can recover the input of RZSUM by simply looking at the first bit of
the output. Other examples can be found in Appendix C.

Despite this hurdle, two works manage to prove lower bounds for m-message protocols. These lower
bounds make the simplifying assumption that the local randomizer sorts (or shuffles) its output messages
before giving them to the shuffler. This does not affect accuracy or privacy because the local sorting (or
local shuffling) is undone by the shuffler anyway.

4.2.1 Approach 1

One paper by Beimel, Haitner, Nissim, and Stemmer [14] obtains a bound on the mutual information
between the output of an m-message randomizer and uniformly random input.

Lemma 23. Let P = (R,A)7 be an m-message (ε,δ)-shuffle private protocol and let Z1, . . . ,Zn ∈ X be (possibly
correlated) random variables. In the execution of P on input Z1, . . . ,Zn, let Yi be the (sorted) output of the i-th user
and let W denote the public randomness. For any i ∈ [n], if Zi is uniformly random over X , then

I(Yi ,W ;Zi) =O
(
(en)m ·

(
ε2 +

δ
ε
log |X |+ δ

ε
log

ε
δ

)
+m logn

)
.

Proof Sketch. Given (ε,δ)-shuffle private protocol P = (R,A), we can create a (ε,δ)-locally private ran-
domizer RP : on input x,W , obtain nm messages by executing (S ◦Rn)(U1,U2, . . . ,Un−1,x) where Ui is
uniformly random, and then output a random (sorted) subset of m messages. Privacy follows from
post-processing.

Now let Y ′i ←RP (Zi ,W ). Prior work has shown that I(Y ′i ,W ;Zi) =O(ε2 + δ
ε log |X |+

δ
ε log

ε
δ ). Then we

use the fact that Y ′i coincides with Yi with probability
(nm
m

)−1.

The above lemma is then used to obtain a lower bound for the common element problem. Refer to [14]
for the full details.

4.2.2 Approach 2

A paper by Chen, Ghazi, Kumar, and Manurangsi [20] takes a different approach. They define a
relaxation of differentially private algorithms—called dominated algorithms— and then argue that the local
randomizer of a shuffle private protocol satisfies that definition.

Definition 24 (Chen et al. [20]). An algorithm R : X × {0,1}∗ → Y is (ε,δ)-dominated if there exists a
distribution D such that for all x ∈ X , all w ∈ {0,1}r , and all Y ∈ Y , P [R(x,w) ∈ Y ] ≤ eε ·P [D ∈ Y ] + δ

7The original statement allows for different users to run different randomizers, but we omit that degree of freedom for simplicity
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Notice that the above definition is a one-sided variant of differential privacy since it does not require
the probability mass function of R(x,w) to dominate that of D.

Lemma 25. If P = (R,A) is an m-message (ε,δ)-shuffle private protocol, then R is (ε+m ln(en),δ)-dominated.

Using the above, Chen et al. derive a lower bound for parity learning:

Theorem 26. If P is a m-message shuffle protocol that solves d-dimensional parity learning, then its sample
complexity is Ω(2d/(m+1)).

In contrast, Kasiviswanathan, Lee, Nissim, Raskhodnikova, and Smith [43] show that centrally private
parity learning is possible with just O(d) samples.

4.3 Robust Shuffle Privacy

The third class of lower bound applies to robustly shuffle private protocols. To obtain these results,
we again develop reductions, but this time to the online model. Briefly, an online algorithm receives user
data one at a time and updates its internal state upon reading each input. The algorithm produces output
when the stream ends.

How do we define privacy in the online model? Dwork, Naor, Pitassi, Rothblum, and Yekhanin [31]
propose pan-privacy: for any time t, the joint distribution of the internal state at time t and the output
should be differentially private. This models one-time violations of the algorithm’s integrity (i.e. a hack,
a subpoena, or a change in ownership).

Balcer, Cheu, Joseph, and Mao [8] describe a generic transformation from robust shuffle privacy to
pan-privacy that preserves accuracy for many statistical problems. Thus, existing lower bounds that hold
under pan-privacy—for the distinct elements and uniformity testing problems—carry over to robust
shuffle privacy. Cheu & Ullman [26] and Nissim & Yan [45] obtain new lower bounds for pan-private
selection and parity learning, which again imply lower bounds for robust shuffle privacy. This second
batch of results imply exponentially large separations in sample complexity between robust shuffle
privacy and central privacy. Refer to Table 3 for an overview of these results.

In the thesis by Cheu [22], the recipe is somewhat simplified. The key observation is that lower bounds
for pan-privacy typically only require the privacy of the internal state and not that of the state-output pair.
[22] uses internal privacy to refer to this weaker notion. Transforming robustly shuffle private protocols to
internally private algorithms is a little easier than transforming them to pan-private algorithms, while
still producing the same results.8

In the following lemma, U is any distribution9 over the data universe X and let Un be the correspond-
ing product distribution over X n. For any other distribution D, let D(p) be the mixture p ·D+ (1− p) ·U.

Lemma 27 (Balcer et al. [8], Cheu [22]). Let P = (R,A) be an (ε,δ)-robustly shuffle private protocol. There is
an (ε,δ)-internally private algorithm QP such that

dTV(QP (Un/2),P (Un)) = 0 (2)

and, for any distribution D over X ,

dTV(QP (Dn/2),P (Dn
(1/4))) < 1/6. (3)

Proof Sketch. The online algorithm’s initial internal state will be the output of (S ◦Rn/2) run on n/2 i.i.d.
samples from U. Each time a user’s data point is read, the algorithm will execute R on it and add the

8It also avoids a technical limitation of the original transformation, which is that privacy parameter needs to be known when a
third of users participate.

9As the symbol suggests, it is typically the uniform distribution

12



Table 3: Comparison of impossibility results for robust shuffle privacy with centrally private algorithms.
d and α are dimension and error parameters, respectively. k is the number of inputs to the learned parity
function. For simplicity, we use ε = ε̂(1/2) and δ = δ̂(1/2). ∗ indicates that δ log(

( d
≤k

)
/δ)� α2ε2/

( d
≤k

)
.

Robust Shuffle Privacy Central Privacy

Additive Error of Distinct Elements
Ω

(√
d
ε +

1
ε

)
O

(
1
ε

)
[8] (n ≥ 2d) [30]

Uniformity Testing
Ω

(
d2/3

α4/3ε2/3
+
√
d
α2 + 1

αε

)
O

(√
d
α2 +

√
d
αε +

d1/3

α4/3ε2/3
+ 1
αε

)
Sample [8] (δ = 0) [4]

Complexity of
Parity Learning

Ω

(√( d
≤k

)
/αε

)
O(log

( d
≤k

)
)

[26] agnostic, [45] realizable ∗ [43]

messages to the internal state (inserted in some random position). This ensures internal privacy because
any internal state is equivalent to the output of the shuffler when the protocol is run on (at least) n/2 data
points.

The output ofQP is simply the execution ofA on the final state. (2) is immediate from the construction.
To obtain (3), we begin with the observation that the final internal state consists of messages produced
by running the protocol on independent samples from U, . . . ,U,D, . . . ,D. This looks almost like D(1/2)
except that the number of samples from D should be binomial. We correct this by slightly modifying
the transformation: replace the first Bin(n/2,q) user data with samples from U. q is chosen so that the
shuffled set of samples approximates samples from D(1/4). The modification does not invalidate our
preceding arguments.

5 The Promise of Interactivity

Thus far, we have limited our attention to one-round shuffle protocols. We shall now explore what
shuffle protocols can do with multiple rounds of communication and how they stack up against centrally
private algorithms.

5.1 Sequential Interactivity (S.I.)

To start, it will help to understand sequentially interactive local protocols. Here, each user sends only
one message but the randomizer of user i can depend on the transcript generated by users 1, . . . , i −1. This
is useful when implementing private iterative methods like gradient descent. Strong separations are
known to exist between one-round and sequentially interactive local privacy. Joseph, Mao, and Roth [42]
show that two rounds suffice to solve pointer-chasing PC(2, `) with sample complexity Oε(log`). This is
exponentially smaller than the lower bound of Ωε(`) in the one-round case (Theorem 17).

Given that S.I. provably enhances the local model, how can we adapt it to the shuffle model?

Approach 1. One option is to re-interpret the shuffler as an anonymity service: users are shuffled u.a.r.
and then the analyzer deploys a sequentially interactive local protocol.10 The recent amplification-by-

10An equivalent interpretation is that, at the beginning of each round of the S.I. local protocol, a middle-man samples a random
user without replacement.
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Table 4: Comparison of positive results in the S.I. shuffle model with central model counterparts. For
brevity, we suppress the term

∑
a∈[k]:∆a>0

logT
∆a

present in both MAB bounds and the term 1/
√
n in the SCO

bounds. SCO bounds also omit logarithmic factors, as well as convexity and smoothness parameters.

S.I. Shuffle Privacy Central Privacy

Regret of
k-arm O

(
k
ε

√
log 1

δ logT
)

O(k/ε)

bandit [48] [49]

Convex, Non-Smooth O(d1/3/ε2/3n2/3)

SCO Convex, Smooth O(d2/5/ε4/5n4/5) O(
√
d/εn)

error Strongly Convex, Non-Smooth O(d2/3/ε4/3n4/3) [13]
Strongly Convex, Smooth O(d/ε2n2)

shuffling lemma by Feldman, McMillan, and Talwar [34] holds in this version of the model. Notice that if
the randomizer does not get updated over time, we are just running a one-round single-message shuffle
protocol. Also observe that it is not possible to run multi-message protocols in this variant of the shuffle
model, since the random permutation is limited to the users and not the messages.

Approach 2. An alternative way to adapt S.I. is to simply run one-round shuffle protocols on disjoint
batches of users. The i-th protocol can depend on the transcript from protocols 1, . . . , i − 1 and can
be multi-message. Summarized in Table 4, two recent works have described protocols in this model.
Tenenbaum, Kaplan, Mansour, Stemmer [48] study the multi-arm bandit problem. The authors give
cumulative regret bounds that match those of the central model up to logarithmic factors. Cheu, Joseph,
Mao, and Peng [23] focus instead on the problem of stochastic convex optimization (SCO). They describe
a one-round vector summation protocol that is repeatedly called inside gradient descent algorithms.

5.2 Full Interactivity (F.I.)

In fully interactive local protocols, a user can communicate with the analyzer multiple times. The
transcript of all the user’s messages must be differentially private.

We can adapt F.I. to the shuffle model in the following way: run one-round shuffle protocols on
batches of users that are not necessarily disjoint. The transcript of a fully interactive shuffle protocol is
the entire list of the outputs of the shuffler. As with local protocols, this transcript must be differentially
private. As an example, Cheu et al. [23] give a SCO protocol that relies on this ability to query a user
multiple times.

Beimel et al. [14] describe a very powerful transformation that shows fully interactive shuffle private
protocols can be as powerful as centrally private ones(!)

Theorem 28. LetM be an arbitrary (central model) randomized algorithm. Assuming an honest majority and
semi-honest corruptions, there exists a two-round fully interactive shuffle protocol PM that simulatesM.

Proof Sketch. The idea is to simulate an information-theoretically secure multi-party computation protocol
by Applebaum, Brakersky, and Tsabary (ABT), the source of the honest majority requirement. The MPC
protocol relies on secure channels of communication; to simulate these channels in the shuffle model,
Beimel et al. use one-time pads.

We begin with a simple building block: Alice and Bob want to agree on one random bit, with one
party designated as “leader.” As usual, the adversary’s view is limited to the output of the shuffler.
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Suppose both Alice and Bob each flip one fair coin and send their bits. By examining the output of the
shuffler, each party can learn what the leader sampled.11 However, if both have 0 or both have 1, the
adversary learns both their bits. This has a 1/2 chance of occurring, so they repeat the process enough
times to drive the probability down. Note that these repetitions can be done in parallel by labeling each
bit with a repetition number. When there are n > 2 users, we label each message with the pair of users
who will read them.

Naively combining the above key agreement with ABT leads to a three-round protocol (one for key
agreement and two for ABT). Beimel et al. show how to use the leftover hash lemma to send a message
and the pad at the same time, reducing the number of rounds to two.

6 Open Questions

How can we close the gap between the amplification and removal lemmas? The best-known ampli-
fication lemma has constraints on the number of users and privacy parameters. In particular, they
do not apply to (lnen,δ)-private randomizers. Randomizers with these parameters are created by the
removal lemma by Cheu et al (Lemma 21). If the removal lemma guarantees could be tightened (or the
amplification constraints could be loosened), then we would be able to show that a single-message shuffle
protocol is intrinsically robust: when only a constant fraction γ of users participate, amplification of the
randomizer’s privacy guarantee would give us a concrete privacy parameter for S ◦Rγn.

What is the optimal sample complexity of uniformity testing under approximate differential privacy?
We have matching upper and lower bounds for testing under pure differential privacy. Prior work has
shown that, in the central model, pure d.p. is not a stronger constraint on the sample complexity of
a binary decision problem than approximate d.p. But is this the case for pan-privacy? Robust shuffle
privacy?

What are the limits of S.I. protocols? It appears difficult to perform the same level of simulation as
done in the fully interactive setting. There may be a way to adapt the strong lower bounds developed
by Joseph et al. [42, 41]. Note that we can ask this question for both approaches of defining S.I. shuffle
protocols.
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A Other Models of Distributed Differential Privacy

Here, we discuss other distributed models and compare them with the shuffle model.

Secure Aggregation Model. In this model, there is a trusted service or functionality called the aggrega-
tor. Much like the shuffle model, users send their messages to the aggregator who then reports a value to
the analyzer. The aggregator’s output is the sum of user messages, modulo some modulus. 12

Ishai, Kushilevitz, Ostrovsky, and Sahai [40] show that we can perform secure aggregation the shuffle
model: each user samples a set of m values uniformly over sets that add up to their sensitive value. The
protocol guarantees that, for large enoughm and any inputs ~x,~x ′ that have the same sum, the distribution
of the multiset of all user shares does not change significantly between ~x,~x ′ . We will not provide the
security proof for space, but we will use the construction in Appendix B.

Conversely, it is not difficult to show that a protocol in the shuffle model implies one in the secure
aggregation model. A user could encode the set of m messages they intend to send as an integer where
the j-th digit is the count of j in that message set. Adding up these encodings will yield the histogram of
all user messages, which contains exactly the same information as the shuffled set of them.

Multi-central Model. In the work by Steinke [46], we find a model where a user can communicate with
any subset of k > 1 servers but they are only guaranteed at least one honest server. The honest server(s)
must communicate in a manner such that the view of the dishonest servers is insensitive to any single
user’s contribution.

Steinke shows that secret sharing can be combined with server-side noise to compute differentially
private sums. One limitation of this protocol is that a malicious user can influence the sum by a magnitude

12In the language of Cheu and Yan [27], the shuffler and the aggregator are two realizations of a secure intermediary.
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as large as the modulus of secret sharing, which needs to be at least as large as n. Recently, Talwar [47]
offers an alternative protocol which verifies the magnitude of the user’s contribution before adding it.

Multi-central protocols are at least as powerful as shuffle protocols with finite communication com-
plexity. This follows from (1) the earlier observation that we can losslessly transform a multi-set of
messages into a (large) integer and (2) secret sharing for summation.

Instead of that transformation-based approach, Steinke argues that we can directly execute shuffle
protocols using public key cryptography (onion encryption). Furthermore, differentially private selection
can be performed using logd samples when given access to an MPC implementation of argmax. In
contrast, the techniques used in [26] imply selection demands d samples under robust shuffle privacy.

Two-Party Protocols. The work by McGregor, Mironov, Pitassi, Reingold, Talwar, and Vadhan [44]
formalizes the following scenario: there are two servers, two disjoint datasets (no user appears in both),
and server j ∈ {0,1} has exclusive access to dataset j. The servers communicate with one another across
rounds. An honest server j should interact with (potentially malicious) server 1−j such that the transcript
is simulatable by a differentially private algorithm on dataset j.

This model is very close to the central model, since any “i.i.d.-style” problem like mean estimation,
uniformity testing, and learning can simply be solved by each server on their own. Indeed, it is not
hard to see that protocols in the distributed models we have seen so far can be simulated by two-party
protocols. Still, McGregor et al. derive a lower bound on the inner product problem, where the goal is to
estimate the inner product between the two datasets. O(1/ε) error is possible in the central model via the
Laplace mechansim but Ω(

√
n) is necessary for the two-party model (and the others that can be simulated

by it)

B Message Complexity and Communication Complexity

In any real implementation of a shuffle protocol, users will have to transmit their messages across a
network. The two critical metrics are the number of messages sent by each user and the total number of
bits they consume. We use message complexity to refer to the former and communication complexity to refer
to the latter. In this Appendix, we give an overview of protocols that are designed to minimize one or
both of these quantities. We also take a glimpse at lower bounds.

B.1 Communication-efficient Bounded-value Sums

In this setting, users have values in the interval [0,1] and the objective is to privately compute
their sum. It is possible to use a binary sum protocol for this problem: a fixed-point representation can
transform a continuous value into a set of zeroes and ones, upon which we perform the local ranomization.
A longer fixed-point representation reduces the rounding error, but increases the noise needed for privacy;
two works [25, 23] show that

√
n-long representation suffices.

The downside of the above approach is that the message complexity —and thus the communication
complexity— scales with

√
n. To rectify this, Balle et al. [9, 10] and Ghazi et al. [39, 38] use a different

reduction that leads to a logarithmic communication complexity.

Theorem 29. There is an (ε,δ)-shuffle private protocol for bounded-value sums with error O(1ε ) where each user
sends 1+O( log(1/δ)log(n) ) messages, each consisting of O(logn) bits.

Proof Sketch. At a high level, the goal is to simulate the symmetric geometric distribution SG(ε), also
known as the discrete Laplace distribution. In the central model, adding such noise suffices for pure
differential privacy.
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The first step is to equate a sample from the SG(ε) with the sum of n samples from another distribution
Dε. This property is called infinite divisibility, most obvious in the Gaussian distribution. The next step is
to recall the modular arithmetic (or secure aggregation) protocol PMOD = (RMOD,AMOD) by Ishai et al.
[40]. It ensures that two input datasets with the same sum (modulo some modulus) cause the protocol to
produce a shuffled set of messages that are δ-close in statistical distance. Finally, we define R to be the
execution of RMOD on yi ← xi + η where η ∼Dε.

If an adversary can only recover
∑
yi , then we will have ε-differential privacy. Due to our use

of MOD, the output of the shuffler (S ◦ Rn)(x1, . . . ,xn) is δ-close to the output of the algorithm (S ◦
RnMOD)(

∑
yi ,0, . . . ,0). This closeness suffices for approximate differential privacy. The error bound O(1ε )

because we are simulating the geometric mechanism and sums exceed the modulus with very low
probability (assuming the modulus is large).

Refer to Balle et al. [10] and Ghazi et al. [38] for analyses of the message complexity of MOD.

As an aside, Cheu and Yan [27] follow much the same template, except that the security property of
their MOD replaces statistical distance with one derived from the definition of pure differential privacy.
But this variant protocol demands exponentially more bits.

B.2 Almost-communication-efficient Histograms with Domain-Independent Error

Here, we describe a protocol that has the same asymptotic error as the protocol by Balcer & Cheu but
reduced communication complexity.

Theorem 30. Fix any T ∈ N and privacy parameters 0 < ε,δ = O(1). There exists an (ε,δ)-private shuffle
protocol which estimates histograms up to `∞ error O(T 2 log(T /δ)/ε2) with at least 99/100− δ probability and
consumes O

(
T 3d1/T

ε2
log Tδ

)
messages of length O

(
logT n+ 1

T logd
)
.

The construction proceeds in two steps. We first make an inefficient but accurate protocol, then
describe a technique to reduce its communication complexity.

B.2.1 An opt-in protocol

Derived from conversations with Maxim Zhilyaev, this protocol reports private histograms such that
the `∞ error is O(log(1/δ)/ε2) with 1− δ probability. At a high level, each user “opts-in” to contributing
noise to the count of each universe element. Much like in the analysis of shuffled randomized response,
the size of this opt-in set only depends on the privacy parameters (and not n or d). This will in fact
determine the maximum error of the histogram.

The first message user i sends is their true value xi . Their second message is a bit bi drawn from
Ber(p) where p =Θ(log(1/δ)/ε2n). This bit determines whether or not the user opts-in: if bi = 1, they will
also flip d fair coins. If the j-th coin is heads, then they send j as yet another message.

To prove this protocol is differentially private, let H be the set of all users i where bi = 1. We leverage
the following concentration result: for sufficiently large n, |H | ≥ κ

ε2
log 1

δ with probability ≥ 1− δ where κ
is the constant from Lemma 2. This implies differential privacy: the noise in the frequency of each j is an
independent sample from Bin(|H |,1/2) and |H | is sufficiently large to ensure that additive noise offers
(ε,δ)-privacy.

Error is also low. Because the noise on any bin is drawn from Bin(|H |,1/2), we have that the `∞ error is
≤ |H | =O(log(1/δ)/ε2) with probability ≥ 1− δ. Note that the analyzer can compute |H | by simply adding
up the one-bit messages. Also, we can derive the “zero-maps-to-zero” property from Balcer-Cheu by
truncating estimates to 0 if they are at most |H |.

What is the communication complexity? Each user sends a one-bit message alongside at least one
log2 d-bit message. The number of log2 d-bit messages sent by a user is a random variable with expectation
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1+p · (d/2) = 1+Θ(d log(1/δ)/ε2n). Contrast this with 1+Θ(d · (1− log(1/δ)/ε2n)) in the protocol by Balcer
& Cheu.

B.2.2 Count-Min Template

This meta-protocol samples random hash functions and repeatedly executes a subroutine for comput-
ing histograms on hashed data. The number of repetitions determines both the privacy parameters and
the size of the hashed domain. See pseudocode in Algorithms 1 and 2

Algorithm 1: RCM a local randomizer for histograms

Input: x ∈ [d]; parameters T , d̂ ∈N; randomizer R : [d̂]→Y ∗
Output: ~y ∈ ([T ]×Y )∗
Obtain hash functions {h(t) : [d]→ [d̂]} from public randomness.
Initialize ~y←∅
For t ∈ [T ]

Compute ~y(t)←R(h(t)(x))
For y ∈ ~y(t)

Append (t,y) to ~y

Return ~y

Algorithm 2: ACM an analyzer for histograms

Input: ~y ∈ ([T ]×Y )∗; parameters T , d̂ ∈N; analyzer A : Y ∗→R
d̂

Output: ~z ∈Rd
Obtain hash functions {h(t) : [d]→ [d̂]} from public randomness.
For j ∈ [d]

zj ←∞
For t ∈ [T ]

Initialize ~y(t)←∅
For (t′ , y) ∈ ~y

Append y to ~y(t) if t′ = t

Compute ẑ(t)←A(~y(t))
For j ∈ [d]

ĵ← h(t)(j)

zj ←min(zj , ẑ
(t)
ĵ
)

Return ~z

Theorem 31. Fix any number of users n, domain size d and natural number T . Let P = (R,A) be any shuffle
protocol for computing d-bin histograms where (1) each user sends, in expectation, M(d) messages of length L(d)
(2) (ε,δ)-privacy is offered to any user and (3) with probability ≥ 1− β, the `∞ error is α(d,β). If we instantiate
PCM = (RCM ,ACM ) with that P and parameters T , d̂← dn · (100d)1/T e, then

1. each user sends, in expectation, T ·M(d̂) messages of length L(d̂) + logT

2. PCM is (T ε,T δ)-private

3. with probability ≥ 99/100− β, the `∞ error is α(d̂,β/T ).
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Proof. Since the randomizer executes R exactly T times on hashed user data, labeling messages with
the execution number each time, Item 1 is immediate from substitution and Item 2 follows from basic
composition.

To prove Item 3, let Ej denote the event that there is a hash function h(t) such that a user’s value j
experiences no collisions with another user: formally, ∃t ∀j ′ ∈ ~x, j ′ , j h(t)(j) , h(t)(j ′). When this event
occurs, observe that the count of h(t)(j) in the hashed dataset is precisely the count of j in the original
dataset. Otherwise, the count of h(t)(j) is at least as large as j. Given that the analyzer A reports estimates
with max error α(d̂,β) with probability ≥ 1−β, a union bound implies the minimum over all T repetitions
can only be wrong by α(d̂,β/T ) with probability ≥ 1− β. Thus, it suffices to bound the probability that Ej
does not occur for some j.

P

~h

[
¬Ej

]
= P

~h

[
∀t ∃j ′ ∈ ~x h(t)(j) = h(t)(j ′)

]
= P

~h

[
∃j ′ ∈ ~x h(t)(j) = h(t)(j ′)

]T
≤ (n ·P

~h

[
h(t)(j) = h(t)(j ′)

]
)T

= (n/d̂)T = (1/(100d)1/T )T = 1/100d

∴ P

~h

[
∃j ¬Ej

]
≤ 1/100

B.3 Communication-efficient Histograms & Range queries

In Table 5, we compare the above protocol with the protocols by Ghazi et al [36]. The communication
complexities of those protocols have only a logarithmic dependence on n,d. They combine compression
techniques that found success in the local model with the privacy blanket notion.

The table presents two other histogram protocols. The first uses the parallel-counts template that we
used in Section 3.2, but now with the binary sum protocol presented by Ghazi, Kumar, Manurangsi, and
Pagh [37]. The expected message complexity of this protocol vanishes with n, so that a large userbase
counteracts a large dimension d. The second also has a vanishing message complexity, but with a faster
rate. Each user in this protocol by Cheu and Zhilyaev [28] randomizes the one-hot encoding of their data,
as well as a small number of (0, . . . ,0) strings. These fake users contribute just enough cover noise to
protect real users.

Table 5: Shuffle protocols for histograms. All take δ > 0. We assume δ < 1/ logd for results from [36]. T is
a natural number. The notation Õ(. . . ) suppresses nested logarithms.

Source Error Messages per User Bits per Message

Thm. 30 O
(
T 2

ε2
log Tδ

)
O

(
T 3d1/T

ε2
log Tδ

)
O

(
logT n+ 1

T logd
)

[36]
Õ
(
1
ε

√
log3 d log 1

δ

)
Õ
(
1
ε2
log3 d log 1

δ

)
O(logn+ loglogd)

O
(
logd + 1

ε

√
logd log 1

εδ

)
O
(
1
ε2
log 1

εδ

)
O(logn logd)

[37] O(1ε logd) 1 +O( d
ε2n

log2 1
δ ) O(logd)

[28] O(logd + 1
ε

√
logd log 1

δ ) 1 +O( logdn + 1
ε2n

log 1
δ ) d
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In [36], Ghazi et al. also explain how to use their protocols in a black-box way to solve the range-query
problem. In this setting, data is drawn from [k]d and the objective is to estimate the number of points in a
given rectangle. Refer to Table 6 for a summary of the results.

Table 6: Shuffle protocols for range queries. All take δ > 0. n ≤ kd for neatness

Technique Error Messages per User Bits per Message

Count-Min O(1ε log
2d+3/2(kd) log 1

δ ) O( 1
ε2
log3d+3(kd) log 1

δ ) O(logn+ log(d logk))

Hadamard O(1ε log
2d+1/2(kd) log 1

εδ ) O( 1
ε2
log2d(kd) log 1

εδ ) O(log(n) · d logk)

B.4 A Lower Bound for Binary Sums

A result by Ghazi et al. [35] states that every communication-bounded shuffle protocol must imply
some local protocol with a nontrivial privacy guarantee:

Lemma 32 (Ghazi et al. [35]). Suppose P = (R,A) satisfies (O(1),0)-shuffle privacy and each user sends m
messages of ` bits. Then the local randomizer (S ◦R1) satisfies (0,1− 2−O(m2`))-differential privacy.

By way of the local model, this implies a lower bound for binary sums:

Corollary 33 (Ghazi et al. [35]). If anm-message shuffle protocol satisfiesO(1)-differential privacy and computes
binary sums up to error o(

√
n), then m2` =Ω(logn).

B.5 A Lower Bound for Vector Sums

In the context of the secure aggregation model, Chan, Choquette-Choo, Kairouz, and Suresh [21]
prove the following lemma regarding finite-precision representations of vectors:

Lemma 34. Fix any algorithm M that takes as input a d-dimensional unit vector (in Euclidean space) and outputs
b bits. If there exists an algorithm A where E

[
‖(A ◦M)(x)− x‖22

]
≤ α, then b ≥ d

2 log2(1/α). If we also have that
E [(A ◦M)(x)− x] = 0, then b =Ω(d/α).

We can use the above to obtain a lower bound on the communication complexity of any secure
intermediary protocol for vector sums

Corollary 35. Let P = (R,I,A) be any secure intermediary protocol (e.g. I is a shuffler or aggregator). If P
privately estimates vector means with near-optimal `2 error—formally, E

[
‖P (~x)− 1

n

∑
xi‖22

]
= Õ(d/n2ε2)—then

R must be supported on a set of size at least 2b for b = Ω̃(max(d log(n2ε2/d),1)). If the estimate is unbiased, then
b = Ω̃(min(d,n2ε2)).

The shuffle protocol by Cheu, Joseph, Mao, and Peng [23] is unbiased and has near-optimal error. It
executes d scalar mean protocols in parallel, each one consuming O(

√
n+ 1

ε2
log 1

δ ) messages of O(logd)
bits. In the regime where d < n2ε2, the communication complexity is suboptimal.

To improve that bound, the authors suggest replacing the scalar mean subroutine with that of Balle
Bell Gascón and Nissim. This alternative protocol is biased and, once we re-scale parameters and label
messages for use in the vector mean protocol, consumes O

((
log dδ + log(n+ 1

ε logd)
)
/ logn

)
messages of

log(d(n+ 1
ε logd)) bits. So this modification is within polylogarithmic factors of the general lower bound
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C Shuffle Protocols with Brittle Privacy

Here, we describe two protocols which satisfy non-trivial shuffle privacy but are not robust to a single
drop-out.

Theorem 36. There exists a protocol P = (R,A) such that (S◦Rn) satisfies pure differential privacy but (S◦Rn−1)
does not satisfy pure differential privacy.

Proof. Define R : {0,1} → {1}∗ such that the length of the output (number of messages) is uniformly
random over {0, . . . ,n+2} on input 0 and uniformly random over {0,1,n+1,n+2} on input 1.

We first show that (S ◦Rn) is ε-differentially private for a finite value of ε. This is achieved by arguing
that, for every input ~x, the length of (S ◦Rn)(~x) has support G = {0, . . . ,n2 + 2n}. We use the notation
supp(|(S ◦Rn)(~x)|) = G. This equivalence holds if and only if the two following statements are true: (i)
the length of (S ◦Rn)(~x) must be some member of the set G := {0, . . . ,n2 +2n} and (ii) each integer in G
has a nonzero probability of being the length.

(i) is immediate from the specification of R: the length is maximized when all users send n + 2
messages and minimized when they send no messages. To prove (ii), we perform case analysis over ~x.

When ~x = 0n, we shall use induction over the elements of G in order. The base case is immediate:
P [|(S ◦Rn)(0n)| = 0] = P [|R(0)| = 0]n > 0. For the inductive step, we are given that P [|(S ◦Rn)(0n)| = g] >
0 for some g ∈ G − {n2 + 2n} and we show that P [|(S ◦Rn)(0n)| = g +1] > 0. There must be a vector
~g ∈ {0, . . . ,n+2}n such that

∑
gi = g and

∏n
j=1P

[
|R(0)| = gj

]
> 0. Because g < n2 +2n, there must be some

index i such that gi < n+2. Hence, define ~g ′ such that g ′i = gi +1 and g ′j = gj for all j , i. Now we have

that P [|(S ◦Rn)(0n)| = g +1] ≥
∏n
j=1P

[
|R(0)| = g ′j

]
> 0.

When ~x = 1n, the proof is similar except the inductive step proceeds via case analysis. If 0 ∈ ~g, we
simply create ~g ′ by changing the 0 to 1. If n+1 ∈ ~g we create ~g ′ by changing the n+1 to n+2. Otherwise,
there is some integer k ≥ 0 such that ~g consists of k copies of (n+ 2) and n− k copies of 1. In this case,
we construct ~g ′ which has n− k − 1 copies of 0 and k +1 copies of n+1. In all cases,

∑
g ′j = 1+

∑
gj and∏

P

[
R(1) = g ′j

]
> 0.

For any other choice of ~x, the fact that supp(|R(1)|) ⊂ supp(|R(0)|) implies

supp(|(S ◦Rn)(1n)|) ⊆ supp(|(S ◦Rn)(~x)|) ⊆ supp(|(S ◦Rn)(0n)|)

so that all the supports are precisely G.
Now we show that (S ◦Rn−1) cannot satisfy pure differential privacy. Consider the neighboring inputs

~x := 0n−1 and ~x ′ := 0n−21. There is a non-zero probability that (S ◦Rn−1)(~x) has length n. However, this is
impossible when the input is ~x ′ , so the likelihood ratio is unbounded.

Theorem 37. There exists a protocol P = (R,A) such that (S ◦Rn) satisfies approximate differential privacy, but
(S ◦Rn−1) does not satisfy any differential privacy.

Proof. Define R : {0,1} → {1}∗ such that the length of the output is uniform over {0,1} on input 0 and
uniform over {n,n+1} on input 1.

We first show that (S ◦ Rn) is (ε,δ)-differentially private for a finite value of ε and δ < 1. This is
achieved by arguing that, for any neighboring ~x ∼ ~x ′ , the support of (S ◦Rn)(~x) intersects with that of
(S ◦Rn)(~x ′). Let k be the number of times 0 occurs in ~x; without loss of generality, assume that the number
of times 0 occurs in ~x ′ is k +1. We have that

P

[
|(S ◦Rn)(~x)| = n2 − kn

]
≥ P

[
|(S ◦Rk)(0k)| = 0

]
·P

[
|(S ◦Rn−k)(1n−k)| = (n− k) ·n

]
> 0
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and that

P

[
|(S ◦Rn)(~x ′)| = n2 − kn

]
≥ P

[
|(S ◦Rk)(0k)| = k

]
·P [|R(0)| = 1] ·P

[
|(S ◦Rn−k−1)(1n−k−1)| = (n− k − 1) · (n+1)

]
> 0

Now we argue that (S ◦Rn−1) cannot satisfy any degree of differential privacy. Given ~x = 0n−1 and
~x ′ = 0n−2,1, the maximum length of (S ◦Rn−1)(~x) is n−1 while the minimum length of (S ◦Rn−1)(~x ′) is n.
Hence, we have neighboring inputs but the supports of the induced distributions are disjoint.
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