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Abstract Differentially private algorithms uncover information about a population while granting a
form of individual privacy to any single member of the population. Research in differential privacy
has primarily focused on one of two models. In the central model, a trusted aggregator runs a private
algorithm. In the local model, owners of data run private algorithms themselves and an untrusted
aggregator computes on the resulting messages. These models have inherent limitations. Solving
statistical problems under local privacy demands many more samples than central privacy. On the other
hand, central privacy is only possible if data owners grant an aggregator direct access to their data.

In this thesis, I introduce and study shuffle privacy, an intermediate model that strives for the benefits
of both local and central privacy. Protocols in this model rely on a service that permutes messages
uniformly at random, which makes communication anonymous. The model abstracts the PROCHLO
analytics system developed at Google [Bittau et al., SOSP ’17]. I describe shuffle protocols for statistical
tasks like binary sums, histograms, and counting distinct elements. The protocols have provably better
accuracy than local protocols and are also robustly private, since they ensure privacy in the face of drop
outs. To complement these positive results, I also prove limitations of the model. Specifically, I show that
robustly private shuffle protocols cannot learn parity or solve feature selection as accurately as centrally
private algorithms.
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Chapter 1

Introduction

Threats to an individual’s privacy come in many forms, ranging from unwarranted government
surveillance to corporate tracking of consumption patterns. This thesis focuses on the privacy in the
context of aggregate statistics. Consider, for example, the developers of a keyboard app who wish to
identify common words and their mispellings. Each user of the app contributes a row of data to a large
table and the app developers want to obtain word-usage statistics from the table in some rigorously
private way.

To do so, the app developers can design differentially private algorithms. Defined by Dwork, McSherry,
Nissim, and Smith [28], such an algorithm ensures that the odds of any output do not change significantly
when a row is removed or swapped from the data table. In terms of our example, the privately collected
statistics could help the keyboard app autocorrect “teh” to “the” but the odds of that occurring are not
that much different if Alice had changed the contents of her text with Bob.

In order to create their private algorithms, the developers of the keyboard app can and must add noise
to the statistics. For instance, if they want to report the frequency of “teh” while satisfying differential
privacy, they can add binomial noise to the raw count. The magnitude of this noise cannot be too small.
Work by Dinur and Nissim [25] shows that an adversary can reconstruct individuals’ information from
too many accurate answers to database queries. In a nutshell, noise is a necessary condition for privacy.1

The challenge is to inject enough noise to deter attacks but not so much to significantly impact accuracy.

Implicit in the above discussion is the assumption that the app developer is trusted, meaning that
data contributors believe it only runs differentially private algorithms. This setting has naturally been
called the trusted curator model or the central model. But even when the app developer promises to run a
differentially private algorithm, people may still hesitate to contribute their data. For example, they may
not believe the interests of the aggregator are in line with their privacy, or they may simply worry that
the aggregator is vulnerable to security breaches.

Local privacy [60, 34, 28, 49] is an alternative to central privacy that aims to overcome these concerns.
Here, each individual executes a differentially private algorithm on their datum, rather than relying on
an outside entity. Then they send a message containing the algorithm’s output to a central server. In our
running example, each user’s smartphone can maintain a bit that indicates whether they used “teh” and,
to ensure differential privacy, the developer receives randomized versions of the bits. Each user could,
for example, flip their bit with probability 0.48. But because each user introduces a nontrivial amount
of noise, the developer’s estimate is much worse than if it had direct access to the bits. Specifically, the
variance of the estimate must be linear in the number of users for any locally private algorithm [14, 21],

1This theoretical result is backed by work due to Garfinkel, Abowd, and Martindale [36], who instantiate successful reconstruction
attacks against publications of prior Census statistics.
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Figure 1.1: Schematic of central privacy (left) and local privacy (right). In central privacy, the aggregator
runs a differentially private algorithm on user data. In local privacy, each user runs a private algorithm
on their own data.

but there is a centrally private algorithm without such a dependence [28]. There is a long line of work
that shows similar limitations hold for a host of estimation and learning problems [12, 1, 46].

These negative results motivate the exploration of intermediate trust models that can achieve some of
the “best of both worlds”. Specifically,

Can we achieve the accuracy that is possible with centrally private algorithms
from a trust assumption that is close to locally private protocols?

In this thesis, we introduce and formally study the shuffle model of differential privacy (henceforth
the shuffle model). Like the local model, users produce messages by way of a local randomizer on their
data but now they trust some entity to apply a uniformly random permutation on all user messages. We
assume that the adversary’s view is limited to that permutation, so no message can be linked back to its
sender. We also restrict attention to one round of non-interactive communication, meaning that each user
generates one batch of messages independently of other users. A pictorial representation of the model is
in Figure 1.2.
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Figure 1.2: Schematic of shuffle privacy.

Aside from being the focus of this thesis, the shuffle model has inspired a substantial amount of
parallel work in recent years. We give an overview in Section 1.2.
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Reasons to study the shuffle model. Given the infinitude of possible models, we take a moment to
justify the focus on the shuffle model. Firstly, the shuffle model is an abstraction of the PROCHLO system
developed by engineers and researchers at Google [15], so understanding the power and limits of the
shuffle model will give insight into what is possible with systems like PROCHLO.

Secondly, the shuffle model can be interpreted as a restricted form of multi-party computation [61, 62, 41]
that admits efficient implementations. An MPC protocol is a cryptographic simulation of a central model
algorithm on data distributed across parties. The protocol guarantees that the only information attainable
by any party is the output of the simulated algorithm. Beginning with work by Dwork, Kenthapadi,
McSherry, Mironov, and Naor [27], a line of work explores the possibility of simulating centrally private
algorithms using MPC without any trusted party [54, 42, 32, 53, 16]. In principle, this class of protocol
would have precisely the same accuracy as central privacy. There are some hurdles in this approach,
however: current methods of simulating arbitrary algorithms have large computation and communication
costs, making them difficult to scale and maintain. In contrast, we can implement a shuffler with textbook
onion routing. So shuffle protocols capture a rich subclass of MPC protocols that can be implemented
relatively efficiently.

Lastly, the shuffle model compares favorably to another, more studied subclass of MPC called the
secure aggregation model [5, 55, 42, 56, 59, 47]. There, protocols assume the existence of a primitive that
securely performs vector addition over a finite field instead of uniformly random permutation. As we
explain in Section 1.3.2, the literature has shown it is possible to instantiate this primitive in the shuffle
model. This transformation implies that private protocols in the shuffle model are at least as a strong as
those in the secure aggregation model.

Understanding the power of the shuffle model. In the shuffle model, observe that users have two
layers of protection: the anonymity offered by the shuffle and the randomness in the messages. The key
result of this assumption is that each user in a shuffle protocol can introduce less noise than in a local
protocol with the same privacy guarantee and only a mildly stronger trust assumption.

To make this consequence concrete, we return to the scenario where the app developer wishes to
privately estimate the frequency of “teh.” Suppose each user’s phone sends two messages to the shuffler:
their indicator bit followed by a bit set to 1 with probability p and 0 with probability 1 − p. Because
the shuffler outputs a random permutation of the message bits, an adversary gleans exactly the same
information about a user from the messages as contained in the sum of the messages. It therefore suffices
to ensure that the sum of the messages is differentially private. When there are n users, this sum has
binomial noise with variance np(1− p). And when the app sets p ∝ 1/n, we can achieve error with no
explicit dependence on n just like in the central model.

In addition to improved privacy-accuracy tradeoffs, most shuffle protocols also exhibit robust differen-
tial privacy. This means a user’s privacy is only slightly degraded when a small fraction of peers drop
out of the protocol. Note that locally private protocols guarantee an extreme form of robustness, since a
user’s privacy is completely independent of the behavior of their peers.

1.1 Overview of Contributions and Techniques

Following this introduction, this thesis consists of three major chapters. Our results are stated for
(ε,δ)-differential privacy, where ε and δ are parameters between 0 and 1 that bound the advantage given
to an adversary (see Definition 1.3.1).
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1.1.1 Chapter 2: Novel Shuffle Protocols.

This chapter describes shuffle protocols for a variety of statistical tasks. All satisfy robust differential
privacy and have better accuracy than competing local protocols. We summarize the techniques here,
then present a table of the asymptotic results.

Section 2.1 describes a binary sum protocol PSYM. Like the sketch in the preceding section, this
protocol mixes noise bits with data bits to ensure privacy via binomial noise. The difference is that PSYM’s
estimate is symmetrically distributed about the true sum, hence the name. The analysis of the protocol is
followed by applications to mean estimation and feature selection.

When each user has one of d > 2 different values, Section 2.2 describes a shuffle protocol that computes
d-bin histograms. To obtain the frequency estimates, the protocol executes a binary sum protocol PZSUM
multiple times in parallel. PZSUM deterministically outputs 0 when the input is all 0 and otherwise
adds noise with low bias and variance (Section 2.2.2). In the context of histograms, this property allows
us to perform a union bound over a number of executions that is independent of the domain size (i.e.
independent of size of dictionary). In Section 2.3, we show that the histogram result implies that we can
identify the support of a distribution under robust shuffle privacy with significantly fewer samples than
non-interactive local privacy.

In Section 2.4, we show how to count the number of distinct elements in the shuffle model. To do so,
we first show how to privately compute the bit that indicates whether or not an element j is present in a
dataset. Like our histogram protocol, our distinct elements protocol executes this primitive d times in
parallel, once for each possible element j. The protocol reports the sum of all d bits.

In Section 2.5, we show how to test if a data distribution is uniform or far from uniform. This is done
by post-processing a private histogram. To ease a step in the analysis, we replace PZSUM with our original
binary sum protocol PSYM.

We summarize our positive results in Table 1.1 and contrast them with lower bounds in the local
model. Note that lower bounds in the local model are typically derived for the case where δ = 0, but prior
work implies that such lower bounds carry over to δ =O(1/n) (see Lemma 1.3.10).

1.1.2 Chapter 3: The Limits of Robust Shuffle Privacy.

To complement our protocols, we derive impossibility results. Specifically, it is not possible to perform
uniformity testing (Section 3.2) or count distinct elements (Section 3.1) under robust shuffle privacy with
as little noise as under central privacy. This is also the case for feature selection (Section 3.3), learning
parity functions (Section 3.4), and other tasks. We summarize these impossibility results and compare
with centrally private algorithms in Table 1.2.

These lower bounds rely on a key structural result: every robustly private shuffle protocol implies an
online algorithm with the same privacy parameters and approximately the same accuracy. The online
algorithm simulates the shuffle protocol by running the local randomizer on each incoming data value. At
any point in time, the algorithm’s internal state is a shuffled set of messages generated by the randomizer
up to that point. Because the shuffle protocol is robustly private, this intuitively grants some level
of differential privacy to any single state. This intuition breaks down for user 1, since the first state
only contains messages from that user. To patch this, the algorithm initializes its state by running the
randomizer many times on dummy data points. This has the effect of shifiting the underlying distribution
but to a bounded degree.

Given this transformation from the shuffle model to the online model, it suffices to invoke lower
bounds for differentially private online algorithms. Prior work contains such results for uniformity
testing and counting distinct elements. For the other problems we consider, we derive new ones using a
nontrivial extension of techniques in the local privacy literature.
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Table 1.1: Comparison of upper bounds under robust shuffle privacy with lower bounds under local
privacy. To simplify presentation, we assume success probability 99/100. d and α are dimension and
error parameters, respectively. `,h are specific to pointer chasing and multi-party pointer jumping.

(ε,δ)-Local Privacy (ε,δ)-Robust Shuffle Privacy
(This thesis)

Binary Sums
Ω

(
1
ε

√
n
)

O
(
1
ε

√
log 1

δ

)
Additive Error of

[14, 21] Thm 2.1.4

Distinct Elements
Ω(n) O

(
1
ε ·min(

√
d,n2/3)

)
[22] (d = n) Thm 2.4.2

`∞ Error of Histograms
Ω

(
1
ε

√
n logd

)
O

(
1
ε2
log 1

δ

)
[12] Thm 2.2.2 (δ =O(1/n))

Mean Estimation Ω
(

1
α2ε2

)
O

(
1
α2 +

1
αε

√
log 1

δ

)
(distributions over [0,1]) [14, 21] Thm 2.1.9

Feature Selection
Ω(d logd

α2ε2
) Õ

(
logd
α2 +

√
d
αε log

1
δ

)
[58] Thm 2.1.14

Sample
Uniformity Testing

Ω
(

d
α2ε2

)
O

([
d2/3

α4/3ε2/3
+
√
d
α2 +

√
d
αε

]√
log

(
1
δ

))
Complexity of [1] Thm 2.5.2

Multi-Party Ω

(
h3

ε2 logh

)
O

(
h logh · 1

ε2
log 1

δ

)
Pointer Jumping [45] Thm 2.3.4 (δ < 1/200h)

Pointer Chasing
Ω(`) O

(
1
ε2
log 1

δ

)
[46] Thm 2.3.6
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Table 1.2: Comparison of our impossibility results for robust shuffle privacy with centrally private
algorithms. As before, d and α are dimension and error parameters, respectively. ∗ indicates that
δ log dδ � α2ε2/d and ∗∗ indicates that δ log( d≤k)/δ� α2ε2/

( d
≤k

)
.

(ε,δ)-Robust Shuffle Privacy ε-Central Privacy
(This thesis)

Additive Error of Distinct Elements
Ω

(√
d
ε +

1
ε

)
O

(
1
ε

)
Thm 3.1.1 (n ≥ 2d) [28] (Laplace mech.)

Uniformity Testing
Ω

(
d2/3

α4/3ε2/3
+
√
d
α2 + 1

αε

)
O

(√
d
α2 +

√
d
αε +

d1/3

α4/3ε2/3
+ 1
αε

)
Thm 3.2.1 (δ = 0) [4]

Feature Selection
Ω

(√
d
αε

)
O

( logd
α2 + logd

αε

)
Thm 3.3.1 ∗ [50] (Exp. mech.)

Simple Ω

(√
d
αε

)
O(logd)

Sample Hypothesis Testing Thm 3.3.15 ∗ [17]

Complexity of
1-Sparse Mean Est.

Ω

(√
d
αε

)
O(logd)

Thm 3.3.18 ∗ [Folklore]

Parity Release
Ω

(√( d
≤k

)
/αε

)
Õ(
√
d log

( d
≤k

)
)

Thm 3.3.21 ∗∗ [43]

Parity Learning
Ω

(√( d
≤k

)
/αε

)
O(log

( d
≤k

)
)

Thm 3.4.3 ∗∗ [49]
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1.1.3 Chapter 4: Single-Message Shuffle Privacy

In the third and final chapter, we shift focus from robustly private protocols to single-message
protocols. As the name suggests, these are shuffle protocols where each user sends exactly one message
to the shuffler. The canonical protocol we study is binary randomized response PRR (Section 4.1). Unlike
PSYM, each user only sends one bit but it achieves the same error. We complement this protocol with a
structural result: every single-message shuffle protocol implies a local protocol with exactly the same
accuracy but loosened privacy guarantees (Section 4.2). This enables the derivation of lower bounds for
single-message shuffle privacy. In particular, these lower bounds show that the model is noisier than the
central model.

One way to make single-message shuffle protocols is to study how well shuffling amplifies the privacy
guarantee of a generic locally private protocol. In Section 4.3, we show that existing analysis is essentially
optimal.

1.2 Related Work

Many other researchers have explored the intersection of shuffling and differential privacy and we
give a bird’s-eye view here.

Privacy Amplification by Shuffling. Shuffling the messages produced by differentially private local
randomizers can improve the privacy guarantee offered to the users. For a crude intuition, suppose the
adversary possesses an optimal strategy to reconstruct data from the output of randomizer R. When
given a shuffled set of such messages, the adversary could execute this strategy on every message but
will have to map its guesses to users. A line of work has quantified the relationship between the ε privacy
parameter of the shuffle protocol and the number of users n. These amplification-by-shuffling lemmas are
derived by Erlingsson, Feldman, Mironov, Raghunathan, Talwar, and Thakurta [33], Balle, Bell, Gascón,
and Nissim [11], culminating with the recent work of Feldman, McMillan, and Talwar [35]. As we show
in Section 4.3, their amplification lemma turns out to be nearly optimal.

Shuffle Protocols. There has been much work on shuffle protocols for summation. In their first work
on the shuffle model, Balle et al. [11] gave a single-message protocol for sums of values in [0,1]. In
follow-up work, they show how to adapt work by Ishai et al. to simulate the discrete Laplace mechanism
in the shuffle model [9]. They later show how to reduce the number of messages per user in this protocol
[10]. Ghazi, Manurangsi, Pagh, and Velingker [39] arrive at the same number of messages as [10] (up to
constants) using different proof techniques. Ghazi, Golowich, Kumar, Manurangsi, Pagh, and Velingker
[37] give the first shuffle protocol that satisfies pure differential privacy while also having the same
magnitude of error as the Laplace mechanism. This thesis focuses on sums of values in {0,1} instead of
more general [0,1] sums because a protocol for the latter implies one for the former. we summarize the
binary sum results in Table 2.1.

Ghazi, Golowich, Kumar, Pagh, and Velingker [38] give two histogram protocols with polylogarithmic
error and communication complexity. We compare these results with ours in Table 2.2.

Lower Bounds for Shuffle Protocols. To match their upper bound, Balle et al. [11] give a lower bound
on the error of any single-message protocol for computing a sum of values in [0,1] .

Chen, Ghazi, Kumar, and Manurangsi give lower bounds when users can only send m messages
in a shuffle private protocol [22]. They show that the local randomizer must satisfy a property they
call pseudo-locally private and then give lower bounds for such protocols. This is a generalization of
the m = 1 case considered in Section 4.2. Concurrently, Beimel et al. [13] also give lower bounds for
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any message-limited shuffle protocol using an information-theoretic argument. Unlike the technique
employed throughout Chapter 3, these arguments cannot give lower bounds for protocols with a large
number of messages.

Variations of Shuffle Model. The shuffle model is derived from the Encode-Shuffle-Analyze (ESA)
architecture introduced by Bittau et al. [15]. In addition to applying a random permutation, their shuffler
drops a message if it does not have many duplicates in the set of messages. In order to focus on the
power of a relatively weak primitive, the work in this thesis is limited to the study of a shuffler that only
applies a permutation. We leave a rigorous analysis of thresholding for future work.

The work by Erlingsson et al. [33] and Feldman et al. [35] consider a model where a server com-
municates with each user once in a uniformly random order. This model captures the execution of
sequentially interactive local protocols on a shuffled set of users, where the randomizer of user i adapts
to the messages of users 1, . . . , i − 1. The model considered by this thesis does not permit interactivity but
does allow multiple messages from each user.

Other work considered protocols that use shufflers multiple times. For example, Beimel, Haitner,
Nissim, and Stemmer [13] leverage this functionality to instantiate generic MPC, meaning that protocols
that use the shuffler twice can implement arbitrary central-model algorithms. Earlier work by Ishai,
Kushilevitz, Ostrovsky, and Sahai [44] also use multi-round shuffling for the purposes of MPC. They
consider a variant of the shuffler where a party can reply to the sender of a message without knowing
their identity. In our work, we only focus on protocols where users communicate once to the shuffler.

Robust Distributed DP. We remark that Ács and Castelluccia [5] put forth a notion of robust differential
privacy: a distributed protocol should satisfy a target level of differential privacy whenever there are at
least a certain fraction of honest users. But to satisfy our definition, a protocol satisfies a target level of
differential privacy when all users are honest and the guarantee must simply degrade smoothly as the
fraction of honest users shrinks.

1.3 Technical Background

We reserve boldface letters to denote probability distributions and vector notation~· for ordered
sequences of objects. Throughout this work, we use the notation [d] := {1,2, . . . ,d}.
X denotes a data universe and a dataset ~x = (x1, . . . ,xn) ∈ X n is an ordered tuple of n rows from the

universe. Each row belongs to one individual called a user. Two datasets ~x,~x ′ ∈ X n are considered
neighbors if they differ in at most one row. This is denoted as ~x ∼ ~x ′ .

Differential privacy is defined in the seminal work by Dwork, McSherry, Nissim, and Smith [28].

Definition 1.3.1 (Differential Privacy [28]). An algorithmM : X n→Z satisfies (ε,δ)-differential privacy if,
for every ~x ∼ ~x′ and every Z ⊂ Z,

P

[
M(~x) ∈ Z

]
≤ eε ·P

[
M(~x ′) ∈ Z

]
+ δ (1.1)

We emphasize that the probability is over the algorithm and not in the inputs. When δ > 0, we sayM
satisfies approximate differential privacy. When δ = 0,M satisfies pure differential privacy and we omit
the δ parameter.

Because the above definition assumes that the algorithmM has “central” access to compute on the
entire raw dataset, we call this central privacy for brevity. We remark that we will typically prove theorems
for ε ≤ 1. In addition to being a reasonable level of privacy, it simplifies the presentation. For example,
eε = 1+O(ε) and exp(ε)+1

exp(ε)−1 =O(1/ε) in this regime.
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We note that it is possible to change (1.1) to some other notion of distance between distributions but
this choice satisfies group privacy and composition. We define these notions below:

Fact 1.3.2 (Group Privacy). For any (ε,δ)-differentially private algorithmM : X →Z, if ~x and ~x ′ differ on d
positions, then for any Z ⊆ Z and d ∈N,

P

[
M(~x) ∈ Z

]
≤ edε ·P

[
M(~x ′) ∈ Z

]
+ d exp((d − 1)ε)δ.

Fact 1.3.3 (Basic Composition). For any (ε,δ)-differentially private algorithmsM1 andM2, the algorithmM3
defined byM3(~x) = (M1(~x),M2(~x)) is (2ε,2δ)-differentially private.

Fact 1.3.4 (Advanced Composition). For any (ε,δ)-differentially private algorithmsM1, . . . ,Md , the algorithm
M defined byM(~x) = (M1(~x), . . . ,Mk(~x)) is

(
ε ·

(√
2d ln(1/δ) + (eε − 1) · d

)
,δ · (d +1)

)
-differentially private.

Another key property of differential privacy is closure under post-processing. This means that any
computation based solely on the output of a differentially private function does not affect the privacy
guarantee.

Fact 1.3.5. For (ε,δ)-differentially private algorithmM : X n→Z and arbitrary function f : Z →Z′ , f ◦M is
(ε,δ)-differentially private.

Proofs of these facts appear in the survey of Dwork and Roth [30].
A class of centrally private algorithms are additive noise mechanisms. These provide private estimates

of 1-sensitive functions f : X n→R, where the inequality |f (~x)− f (~x ′)| ≤ 1 holds for all ~x ∼ ~x ′ ∈ X n. The
definition can be generalized to ∆-sensitivity for any ∆ > 0, though this work will only focus on the case
where

The canonical example of an additive noise mechanism is the Laplace mechanism by Dwork et al.

Lemma 1.3.6 (From [28]). Fix any 1-sensitive function f : X n→R and any ε > 0. LetMf ,ε denote the algorithm
that samples η ∼ Lap(1/ε) and outputs f (~x) + η.Mf ,ε is ε-differentially private.

Another example is the binomial mechanism. Although it has been studied previously (e.g. [27, 38]), we
present the mechanism’s privacy guarantees in a form that is more amenable to our arguments.

Lemma 1.3.7. Let f : X n → Z be a 1-sensitive function and fix any δ < 2e−9. For any m ∈N and p ∈ (0,1),
letMf ,m,p denote the algorithm that samples η ∼ Bin(m,p) and outputs f (~x) + η. If m ·min(p,1− p) > 13ln 2

δ ,
Mf ,m,p is (ε(m,p),δ)-differentially private, where

ε(m,p) := ln

1+
√

13ln 2
δ

mmin(p,1− p)

 <
√

13ln 2
δ

mmin(p,1− p)
.

We prove this lemma in Appendix A.1.

1.3.1 Local Protocols

A user may be skeptical of implementations of centrally private algorithms. They may fear improper
execution or they may be wary of the fact that those executing the algorithm can inspect the data inputs.
Potential breaches by external parties are yet another source of concern. In the extreme, no user trusts
any other party with protecting their data; here, we model the dataset as a distributed object where each
of n users holds a single row. Each user i provides their data point as input to a randomizing function R
and publishes the outputs for some analyzer to compute on.

Definition 1.3.8 (Local Model [60, 34]). A protocol P in the local model consists of two randomized
algorithms:
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• A randomizer R : X →Y mapping data to a message.

• An analyzer A : Yn→Z that computes on a vector of messages.

We define its execution on input ~x ∈ X n as

P (~x) :=A(R(x1), . . . ,R(xn)).

We assume that R and A have access to an arbitrary amount of public randomness.

To protect each user’s data, local differential privacy imposes the privacy constraint on R.

Definition 1.3.9 (Local Differential Privacy [28, 49]). A local protocol P = (R,A) is (ε,δ)-differentially
private if R is (ε,δ)-differentially private. The privacy guarantee is over the internal randomness of the
users’ randomizers and not the public randomness of the protocol.

For brevity, we typically call these protocols “locally private.” We remark that the local privacy
literature includes interactive protocols, where a message sent by a user can depend on prior messages (e.g.
distributed stochastic gradient descent). But our lower bounds will only use results from non-interactive
local privacy and our protocols will only be compared with non-interactive local protocols. For this
reason, we will omit the term “non-interactive” and simply use “local protocol” and “local privacy.”

Using results from Kairouz, Oh, and Viswanath [48] and Murtagh and Vadhan [52, Lemma 3.2], we
can show that it is without much loss of generality to consider only the case where δ = 0:

Lemma 1.3.10. If local randomizer R : X →Y is (ε,δ)-differentially private, then there is a local randomizer R′
that is (2ε,0)-differentially private such that

∀x ∈ X dTV(R(x),R′(x)) ≤ δ

Refer to Appendix A.1 for a proof.

1.3.2 Shuffle Protocols

We now arrive at the model of privacy that is the focus of this work. First rigorously defined in joint
work with Smith Ullman Zeber and Zhilyaev [23], it is a formalization of work done by Bittau et al. [15].

We begin with a preliminary version of the shuffle model. This version, the single-message shuffle
model, is a straightforward relaxation of the local model: each user executes R on their data to produce a
message as before, but now they trust some entity to perform a secure shuffle on all n user messages. An
adversary’s view is therefore limited to a uniformly random permutation of the messages, so no message
can be linked back to its sender.

In this thesis, we allow each user to send any number of messages to the shuffler. The shuffling prevents
messages from the same sender from being linked with one another.

Definition 1.3.11 (Shuffle Model [15, 23]). A protocol P in the shuffle model consists of three randomized
algorithms:

• A randomizer R : X →Y ∗ mapping a datum to a (possibly variable-length) vector of messages.

• A shuffler S : Y ∗→Y ∗ that applies a uniformly random permutation to the messages in its input.

• An analyzer A : Y ∗→Z that computes on a permutation of messages.

As S is the same in every protocol, we identify each shuffle protocol by P = (R,A). We define its execution
by n users on input ~x ∈ X n as

P (~x) :=A(S(R(x1), . . . ,R(xn))).

As with local privacy, we grant the parties an arbitrary amount of public randomness. Importantly, we
also allow R and A to have parameters that depend on n.
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The following is a definition of differential privacy in this model.

Definition 1.3.12 (Differential Privacy for Shuffle Protocols[23]). A shuffle protocol P = (R,A) is (ε,δ)-
differentially private for n users if the algorithm (S ◦ Rn)(~x) := S(R(x1), . . . ,R(xn)) is (ε,δ)-differentially
private. The privacy guarantee is over the internal randomness of the users’ randomizers and not the
public randomness of the shuffle protocol.

For brevity, we typically call these protocols “shuffle private.”
Note that Definition 1.3.12 assumes all n users follow the protocol. In the less-optimistic scenario

investigated by Balcer et al. [8], only a γ fraction of the users are honest and the rest are corrupted. The
honest users perform the randomization R as intended but the corrupted users attempt to degrade the
privacy guarantees for the honest users. In the worst case that we consider, the corrupted users can
collude and transmit arbitrary messages to S . Ideally, honest users should be guaranteed some level of
differential privacy regardless of the attack.

One attack is to simply drop out: S ◦Rγn denotes the execution of the protocol in this case (assuming
that γn ∈N). Because R takes n as a parameter but does not have access to γ , the privacy parameters
actually offered by the protocol may depend on γ due to miscalibration. In an ideal protocol, the privacy
parameters are bounded by functions ε̃(γ), δ̃(γ) which smoothly decrease as γ approaches 1.

Dropping out is the worst that corrputed users can do with respect to differential privacy. This comes
from differential privacy’s resilience to post-processing (Fact 1.3.5): if S◦Rγn is already (ε,δ)-differentially
private, then the algorithm that shuffles the messages produced by S ◦Rγn with the corrupted users’
messages is also (ε,δ)-differentially private. Hence, the following robust variant of shuffle privacy focuses
on drop-out attacks without loss of generality.

Definition 1.3.13 (Robust Differential Privacy [8]). Fix continuous and non-increasing functions ε̃, δ̃
such that 0 < ε̃(γ) < ∞ and 0 < δ̃(γ) < 1 for all γ ∈ [1/2,1].2 A shuffle protocol P = (R,A) is (ε̃, δ̃)-
robustly differentially private for n users if, for all γ ∈ [1/2,1] such that γn ∈N, the algorithm S ◦Rγn is
(ε̃(γ), δ̃(γ))-differentially private.

As with the Definition 1.3.12, we often shorthand Definition 1.3.13 as “robust privacy.” We remark
that it is natural to design protocols where a target level of privacy holds when all users are honest (γ = 1)
and privacy degrades only slightly when there is a honest majority (γ = 1/2). We use the following
shorthand to cover this case:

Definition 1.3.14. A shuffle protocol P = (R,A) is (ε,δ)-robustly private for n users if there are continuous
and non-increasing functions ε̃, δ̃ such that

ε̃(1) = ε, δ̃(1) = δ,

ε̃(1/2) =O(ε), δ̃(1/2) =O(δ),

and P satisfies (ε̃, δ̃)-robust privacy for n users.

Note that we have defined robustness with regard to privacy rather than accuracy. A robustly private
shuffle protocol promises its users that their privacy will not suffer much from a limited fraction of
malicious users. But it does not make any guarantees about the accuracy of the protocol; accuracy
statements are made under the assumption that all users follow the protocol (γ = 1).

Comparison with Secure Aggregation

Suppose we replace the shuffler with a trusted primitive that computes sums, which we denote by Ŝd .
Each user in this secure aggregation model sends one message that is a numerical vector of dimension d

2We could change 1/2 to a parameter τ ∈ (0,1) but we avoid this to simplify the presentation.
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and the analyzer only observes the sum of these vectors (the output of Ŝd). Refer to Ács and Castelluccia
[5], Shi, Chan, Rieffel, Chow, and Song [55], and Kairouz, Liu, and Steinke [47] (and citations within) for
example protocols.

A recurring constraint is that the trusted primitive can only perform arithmetic modulo q; we make
this explicit by writing Ŝd,q. Ishai et al. show that, given messages y1, . . . , yn ∈ Zq, we can essentially
approximate the behavior of Ŝd,q on the messages by running the shuffler S on an encoding of each yi
[44]. Balle et al. apply this result to distributed differential privacy: any secure aggregation protocol can
be simulated by a shuffle protocol that has very similar privacy guarantees [9]. These works give a bound
on the communication complexity to perform this simulation that is strengthened in follow-up work by
Balle et al. and Ghazi et al. [10, 39]. We summarize this line of work in the lemma below.

Lemma 1.3.15 (Via [44, 9] and [10, 39]). Let P̂ = (R̂, Ŝd,q,Â) be a secure aggregation protocol that satisfies
(ε,δ) differential privacy for n users. There exists a shuffle protocol P = (R,A) that satisfies (ε,2δ)-differential
privacy for n users and, on any input ~x, P (~x) = P̂ (~x). Each user in P sends d · d2+ 2log2(d/δ)+log2 q

log2(n/e)
e messages, each

consisting of dlog2 d · log2 qe bits.3

The upshot is that private protocols the shuffle model are at least as strong as private protocols in this
iteration of the secure aggregation model.

Now suppose we relax the constraint to non-negativity. Specifically, each user sends one vector ∈Zd
≥0

to a secure aggregator Ŝd,≥0. The aggregator computes the sum of all these vectors and reports it to the
analyzer without any modification. In Appendix A.2, we show that the shuffle model is equivalent to
this stronger form of the secure aggregation model. The equivalence comes from the fact that a histogram
that summarizes a multiset of objects (the output of aggregator Sd,≥0) contains the same information as
does a uniformly random permutation of those same objects (the output of shuffler S).

The following is immediate from steps inside the proof:

Lemma 1.3.16. Fix any shuffle protocol P = (R,A) and n ∈N. LetMm,R denote the algorithm that, on input
x1, . . . ,xm, executesR(x1), . . . ,R(xm) and reports the histogram of all generated messages. IfMγn,R is (ε̃(γ), δ̃(γ))-
differentially private for all γ ∈ [τ,1] such that γn ∈N, then P is (ε̃(γ), δ̃(γ), τ)-robustly shuffle private for n
users.

We will use this lemma to prove our protocols satisfy robust privacy.

1.3.3 Online Algorithms

As a means to obtain lower bounds for robustly private shuffle protocols, we take a brief detour to the
online model. An algorithm in the online model receives raw data in a stream. At each step in the stream,
the algorithm receives a data point, updates its internal state based on this data point, and then proceeds
to the next element. The only way the algorithm “remembers” past elements is through its internal state.
We formally define this below:

Definition 1.3.17 (Online Algorithm). An online algorithm Q is defined by a sequence of internal algo-
rithms Q1,Q2, . . . and an output algorithm QO . On input ~x, the first function Q1 : X → I maps x1 to a
state s1 and the remaining functions Qi map xi and the previous state si−1 to a new state si . At the end of
the stream, Q publishes a final output by executing QO : I →O on its final internal state.

3We remark that the prior aggregation-to-shuffle transformation did not explicitly consider high-dimensional vectors. To arrive
at the bounds on message length and message complexity, we have simply applied the transformation once for each coordinate. A
logd term appears in the message length to account for “labels” needed to disambiguate between executions (see Section 2.2.1 for a
more precise explanation).
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Figure 1.3: Schematic of pan-privacy.

As in the case of datasets, we say that two streams ~x and ~x ′ are neighbors if they differ in at most
one element. Prior work established the notion of pan-privacy in the online model, which requires the
algorithm’s internal state and output to be differentially private with regard to neighboring streams.

Definition 1.3.18 (Pan-privacy [29, 6]). Given an online algorithm Q, let QI (~x) denote its internal state
after processing stream ~x, and let ~x≤t be the first t elements of ~x. We say Q is (ε,δ)-pan-private if, for
every pair of neighboring streams ~x and ~x ′ , every time t and every set of internal state, output state pairs
T ⊂ I ×O,

P

Q

[(
QI (~x≤t),QO(QI (~x))

)
∈ T

]
≤ eε ·P

Q

[(
QI (~x ′≤t),QO(QI (~x ′))

)
∈ T

]
+ δ. (1.2)

When δ = 0, we say Q is ε-pan-private.

Taken together, these requirements protect against an adversary that sees any one internal state of Q
as well as its final output. Refer to Figure 1.3 for a schematic. Our definition of pan-privacy is the specific
variant given by Amin, Joseph, and Mao [6]. This version guarantees record-level (uncertainty about the
presence of any single stream element) rather than user-level (uncertainty about the presence of any one
data universe element) privacy. We use this variant because, like the shuffle model, we assume each data
contributor has a single data point.

The maintenance of the differentially private internal state offers a stronger guarantee than in central
privacy, since it protects users against future events. For example, a user may trust the current algorithm
operator but want protection against the possibility that the operator will be acquired or subpoenaed in
the future. Under pan-privacy, post-processing (Fact 1.3.5) ensures that future views of the pan-private
algorithm’s state will be differentially private with respect to past data.

We remark that lower bounds for pan-private algorithms typically only rely on the privacy of the
internal state (see e.g. Theorem 12 in [51] and Theorem 3 in [6]). This means they are in fact lower bounds
for a weaker notion we call internal privacy:

Definition 1.3.19 (Internal Privacy). An online algorithm Q is (ε,δ)-internally private if, for every pair of
neighboring streams ~x and ~x ′ , every time t and every set of internal states T ⊂ I ,

P

Q

[(
QI (~x≤t) ∈ T

]
≤ eε ·P

Q

[(
QI (~x ′≤t)

)
∈ T

]
+ δ. (1.3)

When δ = 0, we say Q is ε-internally private.
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We will use internal privacy solely as a means to obtain lower bounds for robust shuffle privacy. We
do not advocate its use as a design constraint, as pan-privacy protects against a more natural adversary.



Chapter 2

Novel Shuffle Protocols

In this chapter, we present robustly shuffle private protocols for a variety of statistical problems. As
shown in Table 1.1, there are many polynomial separations in sample complexity between local privacy
and robust shuffle privacy. In the special case of pointer-chasing, the separation is proportional to a
parameter of the problem so that the sample complexities can be arbitrarily far apart.

2.1 Binary Sums

In this section, we will focus on the most basic statistical operation: each user i has a bit xi ∈ {0,1} and
the objective is to compute the sum up to a small amount error with high probability.

Definition 2.1.1. A protocol P computes binary sums up to error α if, for any input ~x ∈ {0,1}n,

P

z∼P (~x)

|z − n∑
i=1

xi | > α

 < 1/100.

Our claim is that the shuffle model admits protocols for binary sums with error that depends solely
on privacy parameters:

Theorem 2.1.2 (Informal). For any ε ≤ 1, sufficiently small δ, and any n ∈N, there is a shuffle protocol that is

(ε,δ)-robustly private for n users and computes binary sums up to error O(1ε

√
log 1

δ ).

In contrast, work by Beimel Nissim & Omri and Chan Shi & Song yields a lower bound of Ω(1ε
√
n)

under local privacy [14, 21].
We study the binary sum protocol PSYM = (RSYM,ASYM), adapted from joint work with Balcer,

Joseph, and Mao [8]. Refer to Algorithms 1 and 2 for pseudocode. It enjoys many useful properties
of the binomial, Laplace, and Gaussian mechanisms in the central model: the error in the estimate is
symmetrically distributed about 0 and is independent of the input values. These properties will be useful
when constructing our uniformity tester (Sec. 2.5); they are not present in the protocols PZSUM (Sec. 2.2.2)
and PRR (Sec. 4.1).

We first sketch a simple but not robust variant of the protocol. Suppose each user i sends their data
bit in the clear but user 1 also reports λ bits drawn from Ber(1/2). Because the shuffler removes all
information about the senders of the messages, the analyzer’s view is a shuffled set of n + λ messages.
Because each message is a bit and the number of messages is public, the set of messages contains the
same amount of information as the sum of the messages. This is equal to the sum of the data bits

∑
xi

plus the noise drawn from Bin(λ,1/2). This is enough for differential privacy via Lemma 1.3.7. To recover
an unbiased estimate, the analyzer simply subtracts λ/2 from the message sum.

21
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The above sketch is not robust due to the fact that all privacy guarantees vanish when user 1 fails to
inject the random bits. Our final protocol PSYM essentially performs randomized load-balancing: every
user reports a random number of bits drawn from Ber(1/2). This random number of bits is sampled
from Pois(λ/n). One useful property of the Poisson distribution is closure under convolution: if γn
users execute the randomizer, the total number of noise bits is drawn from Pois(γλ). We will invoke
concentration of the Poisson distribution (Lemma 2.1.3 below) to give bounds on the privacy parameters
as a function of γ .

Lemma 2.1.3 (Theorem 1 in [20]). For X ∼ Pois(λ) and t > 0,

P [|X −λ| ≥ t] ≤ 2exp
(
− t2

2(λ+ t)

)
We remark that it is possible to de-randomize the number of messages: have each user send in dλ/ne

messages with probability 1. But to maintain the desirable symmetric noise property, the mean of each
noise bit must be exactly 1/2. For n > λ, each user is sending one extra Bernoulli bit so the variance of the
estimator would scale with n.

Algorithm 1: RSYM, a randomizer for private binary sums

Input: User data x ∈ {0,1}
Output: Message vector ~y ∈ {0,1}∗
Initialize message vector ~y← (x)
Sample s ∼ Pois(λ/n)
For t ∈ [s]

bt ∼ Ber(1/2)
Append bt to ~y

Return ~y

Algorithm 2: ASYM, an analyzer for private binary sums

Input: Message vector ~y ∈ {0,1}∗
Output: Estimate z ∈R
Calculate noise scale `← |~y| −n
Compute z←

(∑|~y|
i=1 yi

)
− `/2

Return z

Theorem 2.1.2 follows from the stronger statement below (take β = 1/100):

Theorem 2.1.4. For any ε ≤ 1, δ < β < 2e−9, and n ∈ N, there is a choice of λ > 0 such that PSYM =
(RSYM,ASYM) is (ε,δ)-robustly private for n users and, for any input ~x ∈ {0,1}n,

P

z∼PSYM(~x)

|z − n∑
i=1

xi | >
11
ε
·
√
ln

4
δ
ln

4
β

 < β
Proof. We will first bound the error of the protocol in terms of the parameter λ:

Claim 2.1.5. Fix β < 1. If λ > 4ln 4
β , then for any input ~x ∈ {0,1}n,

P

[
|PSYM(~x)−

∑
xi | <

√
λ ln

4
β

]
> 1− β.
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Now we derive a setting of λ in order to achieve a target level of robust privacy:

Claim 2.1.6. Fix any ε ≤ 1, δ < 2e−9, and n ∈N. If λ← 104
ε2

ln 4
δ then PSYM is

(
ε/
√
γ,δ

)
-robustly shuffle private

for n users.

We prove the two claims later on. The theorem will immediately follow by substitution of λ into
Claim 2.1.5.

Now it remains to prove Claims 2.1.5 and 2.1.6.

Proof of Claim 2.1.5. Both the binomial and Poisson distribution are closed under summation:

r∑
i=1

Bin(ai ,p) = Bin

 r∑
i=1

ai ,p

 and
r∑
i=1

Pois(λi) = Pois

 r∑
i=1

λi

 .
Recall also that the count of noisy messages generated by any honest user is distributed as Pois(λ/n).
Thus, the sum of the messages produced by (S ◦RnSYM)(~x) must be distributed as

n∑
i=1

xi +
n∑
i=1

Bin
(
Pois

(λ
n

)
,1/2

)
=

n∑
i=1

xi +Bin (Pois(λ),1/2)

We note that the random variable ` computed by ASYM is precisely the sample from Pois(λ) in the above
expression. Thus η←PSYM(~x)−

∑n
i=1 xi is a random variable drawn from Bin(`,1/2)− `/2.

From Lemma 2.1.3,

P

`∼Pois(λ)
[` ≥ 2λ] ≤ 2exp

(
− λ2

2(λ+λ)

)
= 2exp(−λ/4)
≤ β/2

From Hoeffding’s inequality,

P

|η| >
√
`
2
ln

4
β

 < β/2
The result follows from a union bound.

Proof of Claim 2.1.6. Recall Lemma 1.3.16: proving thatMγn,SYM is (ε/
√
γ,δ)-differentially private for all

γ ≥ 1/2 will imply that PSYM is (ε/
√
γ,δ)-robustly shuffle private for n users. And recall thatMγn,SYM is

the algorithm that, on input x1, . . . ,xγn, outputs the histogram which counts the occurrences of {0,1} as
produced by RSYM(x1), . . . ,RSYM(xγn).

The total number of bits produced by those γn executions is γn + ˜̀ where ˜̀ ∼ Pois(γλ). This is
immediate from the fact that RSYM sends the user’s bit along with Pois(λ/n) bits.

Lemma 2.1.3 implies that

P

˜̀∼Pois(γλ)

[
˜̀< γλ/2

]
< 2exp(−γλ/12)

= 2exp
(
−
104γ
12ε2

· ln 4
δ

)
≤ 2exp

(
− ln 4

δ

)
(γ ≥ 1/2, ε ≤ 1)

= δ/2 ()
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The rest of the proof conditions on ˜̀≥ γλ/2. Because the number of messages is γn+ ˜̀, the frequency
of 0 is computable from the frequency of 1: if h0,h1 count zeroes and ones, respectively, then h0 =
γn + ˜̀− h1. By post-processing (Fact 1.3.5), it suffices to prove that the count of 1 as produced by
RSYM(x1), . . . ,RSYM(xγn) is a differentially private algorithm.

By construction ofRSYM, this count is distributed as
∑
xi+Bin( ˜̀,1/2). Once we show that ˜̀/2 > 16ln 4

δ ,
we can invoke Lemma 1.3.7: adding noise from Bin( ˜̀,1/2) to a binary sum suffices for (ε′ ,δ/2)-differential
privacy, where

ε′ :=

√
13ln(4/δ)

˜̀/2

≤

√
52ln(4/δ)

γλ
( ˜̀≥ γλ/2)

≤ ε/√γ

We finally lower bound ˜̀/2 by 13ln 4
δ :

˜̀/2 ≥ γλ/4 (From ˜̀≥ γλ/2)

=
26γ
ε2
· ln 4

δ
(2.1)

> 13ln
4
δ

(γ ≥ 1/2, ε ≤ 1)

Because we execute an (ε/
√
γ,δ/2)-private algorithm with probability ≥ 1 − δ/2, we have (ε/

√
γ,δ)-

differential privacy.

The following technical claim gives some more detail on the noise introduced by PSYM, which will be
useful in our uniformity tester (Sec. 2.5).

Claim 2.1.7. For any ~x ∈ {0,1}n and choice of λ > 0, PSYM(~x) −
∑
xi is independent of ~x and symmetri-

cally distributed over the set {. . . ,−3/2,−1,−1/2,0,1/2,1,3/2, . . . } such that the first four central moments are
0,λ/4,0,3λ2/10+7λ/40.

Proof. Recall that we showed η←PSYM(~x)−
∑n
i=1 xi is a random variable drawn from Bin(`,1/2)− `/2.

Symmetry of this distribution immediately follows from the symmetry of Bin(`,1/2). In the case
where ` is even, the support of Bin(`,1/2) − `/2 is Z. In the case where ` is odd, the support is
{. . . ,−3/2,−1/2,1/2,3/2, . . . }.

We now focus on the moments. For any `, we note that the first and third central moments of
Bin(`,1/2) are both 0, while the second is `/4 and the fourth is 3`2

10 −
`
8 . Given that

E

[
ηk

]
= E

`∼Pois(λ)

[
E

ν∼Bin(`,1/2)−`/2

[
νk

]]
,
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we have that E
[
η2

]
= λ/4 and

E

[
η4

]
= E

`∼Pois(λ)

[
3`2

10
− `
8

]
=

3
10
· E

`∼Pois(λ)

[
`2

]
− λ
8

=
3
10
·
(

Var
`∼Pois(λ)

[`] + E

`∼Pois(λ)
[`]2

)
− λ
8

=
3
10
·
(
λ+λ2

)
− λ
8

= 3λ2/10+7λ/40

2.1.1 Application: Mean Estimation of Distributions over [0,1]

In this subsection, we consider data distributions D over the continuous but bounded interval [0,1].
The goal is to privately estimate the mean of D up to some prescribed error α. More formally,

Definition 2.1.8 (Mean Estimation of Bounded Data). Let α be any real in the interval (0,1/2). An
algorithmM estimates the mean of bounded data up to error α with sample compexity n if, for any
distribution D over [0,1], it takes n independent samples from D and reports z such that |z − E

X∼D
[X]| < α

with probability at least 99/100. This probability is taken over the randomness of the samples observed
byM and the algorithmM itself.

We prove the following upper bound on the sample complexity under robust shuffle privacy:

Theorem 2.1.9 (Informal). For ε ≤ 1 and sufficiently small δ, there exists an (ε,δ)-robustly private shuffle

protocol that estimates the mean of bounded data up to error α with sample complexity O( 1
α2 +

1
αε

√
log 1

δ ).

The main idea is to combine the PSYM protocol with randomized rounding: replace user i’s real value
xi with a binary value bi ∈ {0,1}with expected value xi and then run the protocol on these new bits.

We define the randomizer and analyzer below

RME(x ∈ {0,1}) :=RSYM(b ∼ Ber(x)) (2.2)

AME(~y ∈ {0,1}∗) :=
1
n
· ASYM(~y) (2.3)

Because there are three sources of error—sampling, rounding, and privacy—we give sample complex-
ity guarantees for each. The following bound on the non-private sample complexity is immediate from
an additive Chernoff bound:

Claim 2.1.10. Fix n > 1
α2 ln

2
β . If we sample ~x ∼Dn where D is a distribution over [0,1] and E

x∼D
[x] = µ, then

P

|µ− 1
n

n∑
i=1

xi | < α

 ≥ 1− β

We can also obtain the following characterization of the randomized rounding:

Claim 2.1.11. Fix n > 1
α2 ln

2
β and any ~x ∈ [0,1]n. If bi ∼ Ber(xi), then

P


∣∣∣∣∣∣∣1n

n∑
i=1

xi −
1
n

n∑
i=1

bi

∣∣∣∣∣∣∣ < α
 ≥ 1− β
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Finally, the following is a rephrasing of Theorem 2.1.4:

Corollary 2.1.12. For any ε ≤ 1, δ < β < 2e−9, and n =Ω( 1
αε

√
log 1

δ log
1
β ), there exists a choice of parameter λ

such that PSYM = (RSYM,ASYM) satisfies (ε,δ)-robust shuffle privacy and, for all ~b ∈ {0,1}n,

P


∣∣∣∣∣∣∣1n

n∑
i=1

bi −
1
n
· PSYM(~b)

∣∣∣∣∣∣∣ < α
 ≥ 1− β

Theorem 2.1.9 is immediate from a union bound over Claim 2.1.10, Claim 2.1.11 and Corollary 2.1.12.

2.1.2 Application: Feature Selection

In this subsection, we consider distributions D over the boolean hypercube {0,1}d (equivalently, {±1}d).
The goal is to privately identify a coordinate with the largest mean. More formally,

Definition 2.1.13 (Feature Selection Problem). Let α be any real in the interval (0,1/2) and let d be any
integer larger than 1. An algorithmM solves (α,d)-feature selection with sample complexity n if, for any
distribution D over {0,1}d , it takes n independent samples from D and selects a coordinate J ∈ [d] such
that E

X∼D

[
XJ

]
≥ maxj E

X∼D

[
Xj

]
− α with probability at least 99/100. This probability is taken over the

randomness of the samples observed byM and the algorithmM itself.

Theorem 2.1.14 (Informal). For ε ≤ 1 and sufficiently small δ, there exists an (ε,δ)-robustly shuffle private

protocol that solves (α,d)-feature selection with sample complexity n = Õ
(
logd
α2 +

√
d
αε log

1
δ

)
.

Our solution is PFS = (RFS,AFS) whose pseudocode is given in Algorithms 3 and 4. The approach we
take is to estimate the mean of each coordinate by executing PSYM multiple times (essentially adapting
PME from Section 2.1.1 to a multi-dimensional setting). Note that the d executions are done in one
round of communication. This is achieved by labeling the messages by their execution number and
then packaging all messages together. More precisely, if y(j)i,1, y

(j)
i,2, . . . denote the messages user i wishes to

transmit in execution j, they can send the vector (. . . , (j,y(j)i,1), (j,y
(j)
i,2), . . . ). The labeling allows the analyzer

to disambiguate the executions of PSYM. The labeling technique was first presented in joint work with
Smith, Ullman, Zeber, and Zhilyaev [23].

Algorithm 3: RFS, a randomizer for private feature selection

Input: x ∈ {0,1}d ; implicit parameter λ > 0
Output: ~y ∈ ([d]× {0,1})∗
Initialize message vector ~y←∅
For j ∈ [d]

Compute ~y(j)←RSYM(xj ) using parameter λ
For y ∈ ~y(j)

Append tuple (j,y) to ~y

Return ~y

Because there are two sources of error—sampling and privacy—we give sample complexity guarantees
for each. The following bound on the non-private sample complexity is immediate from applying a union
bound to Claim 2.1.10:
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Algorithm 4: AFS, an analyzer for private feature selection

Input: ~y ∈ ([d]× {0,1})∗; implicit parameter λ > 0
Output: j ∈ [d]
For j ∈ [d]

Let ~y(j) be those bits labeled by j in input ~y
zj ← 1

n · ASYM(~y(j))
Return argmaxj∈[d] zj

Corollary 2.1.15. Fix n > 1
α2 ln

2d
β . If we sample ~x ∼Dn where D is a distribution over {0,1}d and E

x∼D

[
xj

]
= µj ,

then

P

~x∼Dn

∀j
∣∣∣∣∣∣∣µj − 1

n

n∑
i=1

xi,j

∣∣∣∣∣∣∣ < α
 ≥ 1− β.

Now we consider the error due to privacy:

Claim 2.1.16. For any ε ≤ 1, δ < β < 2e−9, and n = Ω̃

(√
d
αε log

1
δ

√
log 1

β

)
, there exists a choice of parameter λ

such that PFS = (RFS,AFS) satisfies (ε,δ)-robust shuffle privacy and, for all ~x ∈ ({0,1}d)n and zj computed by
PFS(~x),

P

∀j
∣∣∣∣∣∣∣1n

n∑
i=1

xi,j − zj

∣∣∣∣∣∣∣ < α
 ≥ 1− β

Proof. Our first objective will be to prove the privacy claim. Define ε′ := ε · 1√
8d ln(1/δ)

and δ′ := δ/(d +1);

note that ε′ < 1. Choose λ such that PSYM satisfies (ε′ ,δ′)-robust shuffle privacy. By advanced composition
(Fact 1.3.4), PFS satisfies

(
ε′ ·

√
2d ln(1/δ) + ε′ · (exp(ε′)− 1) · d,δ′ · (d +1)

)
-robust shuffle privacy. Note that

the second parameter is δ by substitution. We can simplify the first parameter:

ε′ ·
√
2d ln(1/δ) + ε′ · (exp(ε′)− 1) · d

=
ε
2
+ ε′ · (exp(ε′)− 1) · d

≤ ε
2
+2(ε′)2 · d

=
ε
2
+ ε2 · 1

4ln(1/δ)

≤ ε

The inequalities come from ε ≤ 1.
Observe that each zj is an estimate of the binary sum 1

n

∑n
i=1 xi,j as produced by PSYM. By applying

Theorem 2.1.4, we have that

P

∀j
∣∣∣∣∣∣∣1n

n∑
i=1

xi,j − zj

∣∣∣∣∣∣∣ =O
 1
ε′n

√
log

1
δ′

log
d
β


 ≥ 1− β.

Substitution gives our accuracy claim.

Theorem 2.1.14 follows from a union bound over the two preceding claims.

2.1.3 Other Binary Sum Protocols

There are other differentially private protocols for the binary sum problem in the shuffle model
literature; Table 2.1 summarizes their message complexity and bound on error.
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Table 2.1: Shuffle protocols for binary sums from across the literature. Except for [9], each message in
these protocols consumes only one bit. Note that [9, 37] do not analyze their protocol under robust
variant of shuffle privacy.

Source Error Messages per User Properties Assumptions

[8] (Thm. 2.1.2) O(1ε ·
√
log 1

δ ) 1 +O( 1
ε2n

log 1
δ ) Noise is symmetric

in expectation & data-independent

[9] O(1ε ) O(log(n/δ)) Optimal Error

[7] (Thm. 2.2.4) O( 1
ε2
log 1

δ ) 2 If sum is 0, estimate is 0

[37] O( 1
ε3/2
·
√
log 1

ε ) O(1ε logn) δ = 0 n > 1
ε3/2

[23] (Thm. 4.1.2) O(1ε ·
√
log 1

δ ) 1 Single-message n =Ω(1ε log
1
δ )

2.2 Histograms

In this section, we focus on the problem of computing histograms. For any j ∈ [d], we define the
function cj : [d]n→R as the count of j in dataset ~x:

cj (~x) =
n∑
i=1

1 [xi = j] (2.4)

The histogram of ~x is the vector c(~x) := (c1(~x), . . . , cd(~x)). To measure the accuracy of a histogram protocol,
we will measure the maximum error of any frequency estimate. Specifically,

Definition 2.2.1. A protocol P computes histograms up to maximum error α if, for any input ~x ∈ [d]n,

P

~z∼P (~x)

[
‖~z − c(~x)‖∞ > α

]
< 1/100.

From joint work with Balcer [7], there is a robustly shuffle private protocol where the maximum error
depends on ε and δ but not d.

Theorem 2.2.2 (Informal). For ε ≤ 1, δ < 1/100n, and sufficiently large n, there is a (ε,δ)-robustly shuffle
private protocol that computes histograms up to maximum error O

(
1
ε2
log 1

δ

)
.

In contrast, Bassily and Smith prove that a dependence on d is necessary under local privacy [12].

2.2.1 A protocol template PREP
To build up to Theorem 2.2.2, we start by sketching a design template originally presented in joint

work with Smith, Ullman, Zeber, and Zhilyaev [23]. Algorithms 5 and 6 contain the pseudocode for
protocol PREP = (RREP,AREP). It requires access to a black-box protocol P = (R,A). Each user repeatedly
executes the randomizer R, where the j-th execution is dedicated to privately estimating cj (~x). To
compute the histogram, the analyzer executes A on each batch of messages. As was done in the feature
selection protocol, the d executions of R are performed in parallel and we disambiguate by labeling the
messages in each batch.
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Algorithm 5: RREP, a randomizer that repeatedly executes another randomizer

Input: Data x ∈ [d] and a randomizer R : {0,1} → Y ∗
Output: ~y ∈ ([d]×Y )∗
Initialize ~y← ()
For j ∈ [d]

Let bj ← 1 [x = j]
For each message y produced by R(bj ), append (j,y) to ~y

Return ~y

Algorithm 6: AREP, an analyzer that repeatedly executes another analyzer

Input: Message vector ~y ∈ ([d]×Y )∗ and an analyzer A : Y ∗→Z
Output: ~z ∈ Zd
For j ∈ [d]

Initialize ~y(j)← ()
For (i,y) ∈ ~y

If i = j :
Append y to ~y(j)

Compute zj ←A(~y(j))
Return (z1, . . . , zd)

Unlike feature selection (Sec. 3.3), privacy composes over only two protocol executions. This is
because changing a user’s value from j to j ′ affects the counts of j, j ′ . We formalize this in the following
lemma:

Lemma 2.2.3. If the protocol PREP = (RREP,AREP) is given access to an (ε̃, δ̃)-robustly shuffle private protocol
P = (R,A), then PREP is (2ε̃,2δ̃)-robustly shuffle private.

Proof. We assume without loss of generality that [γn] are the honest users. Fix any neighboring pair
of datasets ~x ∼ ~x ′ ∈ [d]γn for the honest users. For any j ∈ [d], let bi,(j) (resp. b′i,(j) denote the indicator

bit 1 [xi = j] (resp. 1
[
x′i = j

]
). Notice that bi,(j) = b′i,(j) except when xi = j and x′i , j. Because ~x ∼ ~x ′ , we

conclude there are precisely two indices j, j ′ where bi,(j) , b′i,(j).

Note that the set of messages labeled by j in the output of (S ◦RγnREP)(~x) has the same distribution as
the set of messages produced by (S ◦Rγn)(~b(j)). Moreover, the independence with which R is executed
implies that this equivalence is true for all j simulatenously: (S ◦ RγnREP)(~x) is a post-processing of
(S ◦Rγn)(~b(1)), . . . , (S ◦Rγn)(~b(d)). Because we have shown that there are precisely two indices j, j ′ where
bi,(j) , b

′
i,(j), robust shuffle privacy follows by composition (Fact 1.3.3).

One way to fill out the template is to use PSYM (Sec. 2.1). Theorem 2.1.4 and a union bound implies a
maximum error of O(1ε

√
log(1/δ) log(d/β) with probability ≥ 1− β.

Joint work with Balcer [7] gives a critical enhancement of the technique: use a specially crafted binary
sum protocol PZSUM. This protocol deterministically outputs 0 if the true sum

∑
xi is 0 and otherwise

outputs a noisy estimate. The maximum error of the modified histogram protocol is now the maximum
noise introduced to the nonzero counts. Since there are at most n such counts, we perform a union bound
over n instead of d executions.
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2.2.2 The binary sum protocol PZSUM
In this subsection, we describe PZSUM = (RZSUM,AZSUM). The randomizer is given by Algorithm 7

and the analyzer by Algorithm 8.
To understand the protocol, first recall how PSYM ensures privacy: each honest user generates a

random number of samples from Ber(1/2) so that the burden of generating binomial noise is evenly
distributed. Now, consider the following modification: given a parameter p, each honest user determin-
istically samples a single bit from Ber(p). Although the resulting noise distribution is not symmetric
(p , 1/2), note that it is bounded by n with probability 1. Via truncation, this means the analyzer can
ensure that the all-zeroes input has no error with probability 1.

One technical issue is that the privacy analysis will rely on an assumption that n is sufficiently large.
We overcome this hurdle by switching to “silent mode” for smaller n: here, users report nothing to the
analyzer. While the error in this case will be ≤ n, n is already ensured to be small.

Algorithm 7: RZSUM a randomizer for binary sums

Input: x ∈ {0,1}; parameters p,r
Output: ~y ∈ {(), (1), (1,1)}
If r = 1 :

Sample w ∼ Ber(p).
Return the vector containing x+w messages, each with value 1

Else
Return ()

Algorithm 8: AZSUM an analyzer for binary sums

Input: ~y ∈ {1}∗; parameter p
Output: z ∈R, an estimate of the binary sum
Let ` be the length of ~y.
If ` ≤ n :

Return 0
Else

Return ` −n · p

Theorem 2.2.4. Fix ε ≤ 1 and δ ≤ 2e−9. For any n ∈ N, there exists choices of p,r such that the protocol
PZSUM = (RZSUM,AZSUM) has the following properties:

i. Each user sends at most two one-bit messages.

ii. On input (0, . . . ,0︸ ︷︷ ︸
n copies

), the protocol reports 0 with probability 1.

iii. PZSUM estimates binary sums with error at most

O
( 1
ε2

log
1
δ

)
with probability ≥ 1− δ.

iv. PZSUMε,δ is (ε,δ)-robustly shuffle private for n users.
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Proof. The first two items in the theorem statement are straightforward to verify. Because x andw are both
bits, x+w ≤ 2 with probability 1: no user ever sends more than two messages. And when ~x = (0, . . . ,0),
`← |~y| is either 0 or drawn from 0+Bin(n,p). Thus, ` ≤ n with probability 1 so that PZSUM(~x) = 0.

To prove the last two items, we will employ case analysis. In the case where n ≤ 52
ε2
· ln 2

δ , we will
set r ← 0 and p to an arbitrary value. Notice that RZSUM(0) =RZSUM(1) so RZSUM satisfies (0,0)-local
privacy. In terms of accuracy, observe that the output of the protocol on any input is 0 with probability 1
(since ` = 0). The error of the estimate is therefore at most n =O( 1

ε2
log 1

δ ) with probability 1.
In the other case, we set r ← 1. We will rely on the following two claims about the accuracy and

privacy of the protocol. Much like PSYM, we will state accuracy results in terms of p and then determine
the correct choice of p for target shuffle privacy.

Claim 2.2.5 (Accuracy of PZSUM). For any δ ≥ 2exp(−np(1−p)) and any input ~x ∈ {0,1}n, the protocol PZSUM
estimates

∑
xi to within n(1− p) + 2 ·

√
np(1− p) · ln(2/δ) with probability ≥ 1− δ.

Claim 2.2.6 (Robust Shuffle Privacy of PZSUM). For any ε ≤ 1, δ < 2e−9 if n > 52
ε2
· ln 2

δ and we assign
p← 1− 26

ε2n
· ln 2

δ , then the protocol PZSUM satisfies (ε/√γ,δ,τ)-robust shuffle privacy for n users.

We note that the choice of p in Claim 2.2.6 implies δ ≥ 2exp(−np(1− p)), as demanded by Claim 2.2.5.
So we can conclude that the protocol is (ε,δ)-robustly shuffle private and that following bounds the error
with probability ≥ 1− δ:

n(1− p) + 2 ·
√
np(1− p) · ln 2

δ

≤ n(1− p) + 2 ·
√
n(1− p) · ln 2

δ

=
26
ε2
· ln 2

δ
+2 ·

√
26
ε2
· ln 2

δ
· ln 2

δ

=O
( 1
ε2
· log 1

δ

)
The final step follows from our bound on ε.

Now it simply remains to prove the two claims.

Proof of Claim 2.2.5. For shorthand, we define α′ = 2 ·
√
np(1− p) · ln(2/δ) and α := n(1 − p) + α′ . Our

objective is to show that |PZSUM(~x) −
∑
xi | ≤ α with probability ≥ 1 − δ. If we let wi be the random bit

generated by the i-th user, note that
∑
wi is drawn from Bin(n,p). An additive Chernoff bound implies

that for our δ regime, the following event occurs with probability ≥ 1− δ:∣∣∣∣∣∣∣
n∑
i=1

wi −np

∣∣∣∣∣∣∣ ≤ α′ (2.5)

The remainder of the proof will condition on (2.5). In the case where ` > n, the analyzer outputs `−np.
We show that the error of ` −np is at most α′ :∣∣∣∣∣∣∣(` −np)−

n∑
i=1

xi

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
n∑
i=1

(xi +wi)−np −
n∑
i=1

xi

∣∣∣∣∣∣∣ (By construction)

=

∣∣∣∣∣∣∣
n∑
i=1

wi −np

∣∣∣∣∣∣∣
≤ α′ (By (2.5))
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In the case where ` ≤ n, the analyzer will output 0. This means the error is exactly
∑
xi . We argue that

` ≤ n implies
∑
xi ≤ α.

n ≥ `

=
n∑
i=1

(xi +wi) (By construction)

≥
n∑
i=1

xi +np −α′ (By (2.5))

Rearranging terms yields

n∑
i=1

xi ≤ n(1− p) +α′ = α

which concludes the proof.

Proof of Claim 2.2.6. Note that 1− p < 1/2 because n > 52
ε2

ln 2
δ . Hence, 1− p =min(p,1− p).

Recall Lemma 1.3.16: proving thatMγn,ZSUM is (ε/
√
γ,δ)-differentially private for all γ ≥ 1/2 will

imply that PSYM is (ε/
√
γ,δ)-robustly shuffle private for n users. And recall that Mγn,ZSUM is the

algorithm that, on input x1, . . . ,xγn, outputs the histogram ~h ∈Z≥0 which counts the number of messages
produced by RSYM(x1), . . . ,RSYM(xγn).

But this number is clearly distributed as
∑γn
i=1 xi +Bin(γn,p). If we can show that γnmin(p,1− p) ≥

13ln 2
δ , then Lemma 1.3.7 will imply that the mechanism is (ε̃(γn,p),δ)-private, where

ε̃(γn,p) :=

√
13

γnmin(p,1− p)
ln

2
δ
=

√
13

γn(1− p)
ln

2
δ

=

√
13
26γ

· ε

≤ ε/√γ

It remains to prove γnmin(p,1− p) ≥ 13ln 2
δ .

γnmin(p,1− p) = γn(1− p) =
26γ
ε2
· ln 2

δ

≥ 13ln
2
δ

The final inequality comes from ε ≤ 1,γ ≥ 1/2

2.2.3 Filling the PREP template with PZSUM
In this section, we focus on the protocol PHIST := (RHIST,AHIST) whose randomizer and analyzer are

specified below:

RHIST(·) :=RREP(·,RZSUM)

AHIST(·) :=AREP(·,AZSUM)

Theorem 2.2.2 follows from the result below concerning PHIST:
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Theorem 2.2.7. Fix any ε ≤ 1, n ∈N, and δ < 2e−9/n. There are choices for parameters p,r such that PHIST has
the following properties:

i. Each user sends ≤ d +1 messages, each consisting of O(logd) bits.

ii. PHIST is (2ε,2δ)-robustly shuffle private for n users.

iii. On any input ~x ∈ [d]n, PHIST reports ~z such that

‖~z − c(~x)‖∞ =O
( 1
ε2

log
1
δ

)
with probability ≥ 1−nδ.

Before proving the theorem, we remark that in Appendix 2.2.4, we show how to use hashing to reduce
the message complexity from Θ(d) to dc for arbitrary constant 0 < c < 1. Also note that the accuracy
guaranteed by this protocol is close to what is possible in the central model: there is a stability-based
algorithm with simultaneous error O((1/ε) · ln(1/δ)) [18].

Proof. Part i is immediate from (1) the fact that each execution of RZSUM results in at most one noise bit
and (2) each user has a single value in [d]. Part ii follows from Lemma 2.2.3. Thus, it only remains to
prove Part iii.

For any i ∈ [n] and j ∈ [d], let bi,(j) denote the bit that is 1 when xi = j (0 otherwise) and let ~b(j) denote
the vector (b1,(j), . . . , bn,(j)). In the output of (S ◦RnHIST)(~x), notice that the number of messages labeled

by j has the same distribution as the length of (S ◦RnZSUM)(~b(j)). This means zj as computed by AREP

has the same distribution as PZSUM(~b(j)). Thus, Claim 2.2.5 implies that P
[
|zj − cj (~x)| > α

]
< δ where

α =O
(
1
ε2
log 1

δ

)
.

Define Q := {j ∈ [d] : cj (~x) > 0}. To bound the error, we leverage the property that when j <Q, ZSUM
will report a nonzero value with probability 0.

P

[
‖~z − c(~x)‖∞ > α

]
= P

[
∃j ∈ [d] s.t. |zj − cj (~x)| > α

]
≤ P

[
∃j ∈Q s.t. |zj − cj (~x)| > α

]
+P

[
∃j <Q s.t. |zj − cj (~x)| > α

]
= P

[
∃j ∈Q s.t. |zj − cj (~x)| > α

]
(Theorem 2.2.4 Part ii)

≤
∑
j∈Q

P

[
|zj − cj (~x)| > α

]
≤

∑
j∈Q

δ

≤ nδ

The final inequality comes from the fact that the number of distinct elements in ~x is bounded by n.

2.2.4 Reducing Message Complexity via Count-Min

Recall that the protocol PHIST has maximum errorO( 1
ε2
log 1

δ ) but has message complexityO(d). Using
the count-min technique from the sketching literature, we can drive down the message complexity to
O(n · d1/T ) for arbitrary constant T ∈N without inflating the asymptotic error. This result comes from
discussion with Kobbi Nissim and Rasmus Pagh.

At a high level, we hash the universe to the domain [d̂]. If an element j experiences no collisions, the
estimate produced by running PHIST on the hashed data is unaffected. Otherwise, the estimate is an
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Algorithm 9: RHIST2 a local randomizer for histograms

Input: x ∈ [d]; parameters p,r ∈ (0,1), T , d̂ ∈N
Output: ~y ∈ ([T ]× ([d̂]× {1}))∗
Obtain hash functions {h(t) : [d]→ [d̂]} from public randomness.
Initialize ~y←∅
For t ∈ [T ]

Compute ~y(t)←RHIST(h(t)(x)) (using parameters p,r and universe d̂)
For y ∈ ~y(t)

Append (t,y) to ~y

Return ~y

Algorithm 10: AHIST2 an analyzer for histograms

Input: ~y ∈ ([T ]× ([d̂]× {1}))∗; parameters p,r ∈ (0,1), T , d̂ ∈N
Output: ~z ∈Rd
Obtain hash functions {h(t) : [d]→ [d̂]} from public randomness.
For j ∈ [d]

zj ←∞
For t ∈ [T ]

Initialize ~y(t)←∅
For (t′ , y) ∈ ~y

Append y to ~y(t) if t′ = t

Compute ẑ(t)←AHIST(~y(t)) (using parameters p,r and universe d̂)
For j ∈ [d]

ĵ← h(t)(j)

zj ←min(zj , ẑ
(t)
ĵ
)

Return ~z



2.3. SUPPORT IDENTIFICATION AND RELATED PROBLEMS 35

overestimate. Using T hash functions and taking the minimum over the T estimates, we can drive down
the probability that the minimum is an overestimate.

Theorem 2.2.8. Fix any ε = O(1), n,T ∈N, and δ < 2e−4/n. There are choices for parameters p,r, d̂ such that
PHIST2 has the following properties:

i. Each user sends T ·n ·O(d1/T ) messages, each consisting of O(logT + logn+ 1
T logd) bits.

ii. PHIST2 is (2T ε,2T δ)-robustly shuffle private for n users.

iii. On any input ~x ∈ [d]n, PHIST2 reports ~z such that

‖~z − c(~x)‖∞ =O
( 1
ε2

log
1
δ

)
with probability ≥ 1−nδ − (1/100)T .

Proof. We choose p,r exactly as in Theorem 2.2.7. We assign d̂ ← dn · (100d)1/T e. Part i is immediate
from this choice. Part ii follows from basic composition (Fact 1.3.3), since the randomizer executes PHIST

exactly T times on user data.
To prove Part iii, let Ej denote the event that there is a hash function h(t) such that a user’s value j

experiences no collisions with another user: formally, ∃t ∀j ′ ∈ ~x, j ′ , j h(t)(j) , h(t)(j ′). When this event
occurs, observe that the count of h(t)(j) in the hashed dataset is precisely the count of j in the original
dataset. Otherwise, the count of h(t)(j) is at least as large as j. Given that the analyzer AHIST reports
estimates with max error α =O( 1

ε2
log 1

δ ) with probability 1−nδ, the minimum of the estimates can only
be wrong by α. Thus, it suffices to bound the probability that Ej does not occur for some j.

P

~h

[
¬Ej

]
= P

~h

[
∀t ∃j ′ ∈ ~x h(t)(j) = h(t)(j ′)

]
= P

~h

[
∃j ′ ∈ ~x h(t)(j) = h(t)(j ′)

]T
≤ (n ·P

~h

[
h(t)(j) = h(t)(j ′)

]
)T

= (n/d̂)T = (1/100)T · 1
d

∴ P

~h

[
∃j ¬Ej

]
≤ (1/100)T

2.2.5 Other Histogram Protocols

There are other shuffle protocols for the histogram problem; Table 2.2 summarizes their message
complexity, length per message (in bits), and bound on `∞ error. Most of the other protocols attempt to
optimize communication complexity (total number of bits transmitted by users) which PZSUM does not.
The single-message result comes from a simple application of the amplification lemma due to Feldman
McMillan and Talwar [35].

2.3 Support Identification and Related Problems

In this section, we consider problems that reduce to support identification. Our shuffle protocol
PHIST allows us to solve one of these problems with arbitrarily fewer samples than any protocol the
non-interactive local model. This section is adapted from joint work with Balcer [7].

We begin by defining support identification.



36 CHAPTER 2. NOVEL SHUFFLE PROTOCOLS

Table 2.2: Shuffle protocols for histograms from across the literature. η is an arbitrary constant in the
interval (0,1).

Source Messages per user Bits per Message `∞ Error

[7] (Thm. 2.2.7) d +1 O(logd) O
(

1
ε2n

log 1
δ

)
O(dη) O(logd) O

(
1
εn

√
logd log 1

δ

)
[38] O

(
log3 d
ε2

log logd
δ

)
O(logn+ loglogd) O

(
log3/2 d
εn

√
log logd

δ

)
O

(
1
ε2
log 1

εδ

)
O(logn logd) O

(
logd
n + 1

εn

√
logd log 1

εδ

)
[38] & [35] 1 d O

 logdn + 1
√
εn

3
4

√
logd

(
log 1

δ

)1
4


Definition 2.3.1. The support identification problem has positive integer parameters h ≤ d. Given any data
universe X with size d and any H ⊆ X , let UH be the uniform distribution over support H . The set of
problem instances is {UH : H ⊆ X and |H | = h}. A protocol solves the (h,d)-support identification problem
with sample complexity n if, given n users with data independently sampled from any problem instance
UH , it identifies H with probability at least 99/100.

We now show how to solve this problem in the shuffle model.

Claim 2.3.2. Fix any ε ≤ 1 and δ <min(2e−9,1/200h). The sample complexity of the (h,d)-support identification
problem is O(h logh · (1/ε2) · log(1/δ)) under (ε,δ)-robust shuffle privacy.

Proof. For the purposes of this proof, we assume there is some bijection f between X and [d] so that any
reference to j ∈ [d] corresponds directly to some f (j) ∈ X and vice versa. Consider the following protocol:
execute PHIST on n samples from UH and then choose the items j whose estimates zj are at least α +1.
We will determine the magnitude of α later. Privacy is immediate from closure under post-processing
(Fact 1.3.5). We will prove that this new protocol returns H exactly with probability at least 99/100.

Let Esamp be the event that some element in support H has frequency less than (2α +1) in the sample.
Let Epriv be the event that the histogram protocol estimates the frequency of some element in universe [d]
with error larger than α. If neither events occur, every element in H has estimated frequency at least α+1
and every element outside H has estimated frequency at most α. Hence, it suffices to show that Esamp
and Epriv each occur with probability ≤ 1/200.

We lower bound the probability of Esamp via a coupon collector’s argument. That is, if we have
n =O(kh logh) samples from UH then each element of H appears at least k times with probability at least
199/200. Hence we set k = (2α +1).

We lower bound the probability of Epriv by simply tweaking the proof of Part (iii) of Theorem 2.2.7.
Specifically, we can invoke Claim 2.2.5 to conclude that |zj − cj (~x)| = α with probability ≥ 1− δ, for any
single j ∈ [d] and some α = O

(
1
ε log

1
δ

)
. Although we again use Q = {j ∈ [d] : cj (~x) > 0}, we now upper

bound |Q|—the number of distinct elements—by the support size h instead of sample size n. Thus,

P

[
Epriv

]
= P

[
∃j ∈ [d] s.t. |zj − cj (~x)| > α

]
≤

∑
j∈Q

P

[
s.t. |zj − cj (~x)| > α

]
≤ hδ ≤ 1/200
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So we have shown that Esamp and Epriv each occur with probability ≤ 1/200. This concludes the proof.

In the above analysis, if we had used a histogram protocol with `∞ error that depends on the universe
size d, then the sample complexity would in turn depend on d. For example, the naive protocol based
upon randomized response discussed in the end of Section 2.2.1 has error α =O((1/ε) ·

√
logd · log(1/δ))

and therefore the sample complexity would grow with
√
logd.

Having shown how to solve the support identification problem using PHIST, we now describe two
different problems that reduce to support identification.

2.3.1 Multi-party Pointer Jumping

Definition 2.3.3 (Joseph et al. [45]). The multi-party pointer jumping problem is denoted MPJ(s,h) where
s,h are positive integer parameters. A problem instance is U{Z1,...,Zh} where each Zi is a labeling of the
nodes at level i in a complete s-ary tree. Each label Zi,j is an integer in {0, . . . , s − 1}. The labeling implies a
root-leaf path: if the i-th node in the path has label Zi,j , then the (i +1)-st node in the path is the (Zi,j )-th
child of the i-th node. A protocol solves MPJ(s,h) with sample complexity n if, given n samples from any
U{Z1,...,Zh}, it identifies the root-leaf path with probability at least 99/100.

Theorem 2.3.4. Fix any ε =O(1) and δ <min(2e−9,1/200h). The sample complexity of MPJ(s,h) is O(h logh ·
(1/ε2) · log(1/δ)) under (ε,δ)-robust shuffle privacy.

Proof. As with pointer-chasing, we can solve MPJ(s,h) when the support is identified. From Claim 2.3.2,
this takes O(h logh · (1/ε2) · log(1/δ)) samples under shuffle privacy.

Joseph et al. [45] give a lower bound of Ω(h3/(ε2 logh)) under local privacy when s = h4, even allowing
for sequential interactivity.1

2.3.2 Pointer Chasing

Definition 2.3.5 (Joseph et al. [46]). The pointer chasing problem is denoted PC(k,`) where k,` are positive
integer parameters. A problem instance is U{(1,a),(2,b)} where a,b are permutations of [`]. A protocol solves
PC(k,`) with sample complexity n if, given n independent samples from any U{(1,a),(2,b)}, it outputs the k-th
integer in the sequence a1,ba1 , aba1 . . . with probability at least 99/100.

Theorem 2.3.6. Fix any ε =O(1) and δ < 2e−9. The sample complexity of PC(k,`) is O((1/ε2) · log(1/δ)) under
(ε,δ)-robust shuffle privacy.

Proof. To solve PC(k,`), note that it suffices to identify the support {(1, a), (2,b)} and simply execute the
pointer chasing ourselves. Although the universe has size d = 2 · `!, the support only has size h = 2; from
Claim 2.3.2, PHIST can identify it with just O((1/ε2) · log(1/δ)) samples, independent of k and `.

In the case where k = 2, Joseph et al. [46] give a lower bound of Ω(`/eε) for non-interactive local
protocols. Because ` can be made arbitrarily large, there is an arbitrarily large separation between shuffle
privacy and non-interactive local privacy.

1We remark that we do not claim a polynomial separation between the sample complexity of shuffle privacy and sequentially
interactive local privacy. This would require a proof that every sequentially interactive local protocol has a counterpart in the
shuffle model.
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2.4 Distinct Elements

In this section, we take the data universe to be X = [d] and let DE(~x) denote the number of distinct
elements in ~x ∈ [d]n, i.e. DE(~x) := |{j ∈ [d] | ∃i where xi = j}|. Our goal is to approximate DE, minimizing
additive error:

Definition 2.4.1 (Distinct Elements Problem). An algorithmM solves the (d,α,β)-distinct elements problem
on input length n if for all ~x ∈ [d]n, P

M

[
|M(~x)−DE(~x)| ≤ α

]
≥ 1− β.

Notice that 1 [∃i where xi = j] is precisely OR(1 [x1 = j] , . . . ,1 [xn = j]). As a consequence, the number
of distinct elements can be decomposed as the sum

DE(~x) =
d∑
j=1

OR(1 [x1 = j] , . . . ,1 [xn = j]) (2.6)

Recall the template protocol PREP (Section 2.2.1): given dataset ~x ∈ [d]n, it executes another protocol
on the indicator bits 1 [x1 = j] , . . . ,1 [xn = j] for every j ∈ [d]. Now suppose that there exists a private
protocol POR which approximates OR. If we fill the template protocol with POR, Lemma 2.2.3 implies
that we can privately compute all the OR functions in (2.6). This means we can compute an estimator
with standard deviation proportional to

√
d.

Theorem 2.4.2 (Informal). Fix any ε =O(1), δ < 1 and n > 2. There is an (ε,δ)-robustly private shuffle protocol
that solves the (d,α,1/100)-distinct elements problem for some

α =O
(1
ε
·min(

√
d,n2/3)

)
Chen, Ghazi, Kumar, and Manurangsi [22] give a lower bound of Ω(d) under local privacy in the

regime where d = n, ε =O(1), and δ = o(1/n). Robust shuffle privacy therefore solves the problem with
polynomially smaller error.

Most of this section will be dedicated to proving the O(
√
d/ε) bound on error. Note that when

d = ω((εn)2), the bound is trivial because the number of distinct elements is bounded by the number of
users n. To obtain the alternate bound, we hash the universe from size d to d′ =O(n4/3) and then run the
protocol on the new universe [d′]. We describe this technique in more detail in Section 2.4.3.

2.4.1 The OR protocol POR

In this subsection, we show how to compute OR under robust shuffle privacy. Once this is done, we
will be able to plug the protocol into PREP and then approximate the number of distinct elements. Our
analysis begins with the algorithmMε, a basic centrally private solution:

Mε(~x) =

Ber(1/2) if OR(~x) = 1

Ber(1/2eε) otherwise.
(2.7)

Claim 2.4.3. For any ε > 0, the algorithmMε is ε-differentially private.

Proof. For either b = 1 or b = 0, note that

P [Ber(1/(2eε)) = b]
P [Ber(1/2) = b]

∈ {e−ε,2− e−ε}

Since 2− e−ε ∈ [e−ε, eε], we conclude that the mechanism is ε-centrally private.
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The key property of the above solution is that we can simulate it in the shuffle model using a technique
inspired by Balle Bell Gascón and Nissim [9]. At a high level, we show that there is some p such that
when each user reports a message drawn from Ber(p), the sum (mod 2) is distributed as Ber(1/2eε). But
note that when at least one user reports Ber(1/2), the sum (mod 2) is distributed as Ber(1/2).

Our goal is complete once we implement modular arithmetic in the shuffle model. Ishai, Kushilevitz,
Ostrovsky, and Sahai [44] provide a solution: at a high level, each user generates multiple one-bit
messages that are drawn uniformly at random conditioned on their sum being equal to the user’s bit.
When each user sends enough messages, Ishai et al. prove that an analyzer cannot distinguish between
two datasets that have the same sum.

Theorem 2.4.4 (Special Case of [44, 11, 40]). There exists a shuffle protocol PMOD = (RMOD,AMOD) that takes
security parameter σ > 0 and has the following properties:

i. Each honest user sends O(σ + logn) one-bit messages.

ii. If all users are honest, then on any input ~x ∈ {0,1}n the protocol outputs
∑n
i=1 xi (mod 2).

iii. Let H be the set of γn honest users. If γn > 2, then on any input ~x ∈ {0,1}n

dTV

(S ◦RγnMOD)(~xH ), (S ◦R
γn
MOD)

∑
i∈H

xi (mod 2),0, . . . ,0


 < γ · 2−σ

Given Lemma 2.4.6 and Theorem 2.4.4, we are now ready to present our OR protocol POR =
(ROR,AMOD). As stated previously, it takes a parameter p (alongside the parameter σ ). The randomizer
ROR is given in Algorithm 11. The analyzer is the same one from Theorem 2.4.4.

Algorithm 11: Randomizer ROR

Input: user data x ∈ {0,1}
Output: message vector ~y ∈ {0,1}∗

If x = 1 : Sample u ∼ Ber(1/2);
Else Sample u ∼ Ber(p) ;
~y←RMOD(u), with parameter σ
Return ~y

Theorem 2.4.5. Fix any ε > 0, δ < 1, and n > 4. There exists choices of parameters p,σ such that the shuffle
protocol POR = (ROR,AMOD) has the following properties:

i. Each honest user sends O(log e
ε+1
δ + logn) one-bit messages.

ii. If all users are honest, then on any input ~x ∈ {0,1}n POR(~x) has the same distribution asMε(~x).

iii. If ε > 1, the protocol is (ε+ ln(1/γ),δ)-robustly shuffle private. Otherwise it is (εγ /γ,δ)-robustly shuffle
private.

Proof. We choose σ ← log e
ε+1
δ and p ← 1−(1−1/eε)1/n

2 . Part (i) is immediate from substitution of σ into
Theorem 2.4.4. To prove the other parts, we rely on the following technical lemma:

Lemma 2.4.6. Fix any integers m ≤ n and real number p∗ ∈ [0,1/2]. If we assign p← 1−(1−2p∗)1/n
2 and sample

i.i.d. X1, . . . ,Xm ∼ Ber(p), then the sum X :=
∑m
i=1Xi (mod 2) is distributed as

Ber
(
1− (1− 2p∗)m/n

2

)
.
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The proof is given in Appendix A.3.
Part ii: If OR(~x) = 1, then there is at least one user i who samples a random bit ui ∼ Ber(1/2).

Consequently,
∑n
i=1ui mod 2—the output of the protocol—is distributed as Ber(1/2). Otherwise, Lemma

2.4.6 implies the distribution is Ber(1/2eε). This behavior is precisely that ofMε(~x).
Part iii: Roughly speaking, we show that the algorithm (S ◦RγnOR) simulatesMε′ where

ε′ := ln
(

1
1− (1− e−ε)γ

)
.

ε+ ln(1/γ) serves as an upper bound to this expression; εγ /γ is an alternate bound when ε < 1. For the
proof, see Lemma A.3.1 in Appendix A.3.

We will present a series of intermediary algorithms that incrementally changeMε′ into (S ◦RγnOR)
while maintaining privacy. Throughout, we will rely on the helper algorithm T : {0,1}γn→ {0,1}γn: on
input ~x, this algorithm maps each xi to a random ui such that ui ∼ Ber(1/2) if xi = 1 and ui ∼ Ber(p)
otherwise.

We first consider the algorithm M1(~x), which executes ~u ← T (~x) and then outputs U :=
∑γn
i=1ui

(mod 2). On every input ~x, we claim thatM1(~x) ∼Mε′ (~x) and thereforeM1 is also ε′-d.p. If OR(~x) = 1,
then some xi has value 1 so that U ∼ Ber(1/2), matchingMε′ (~x). Otherwise, Lemma 2.4.6 implies that

U ∼ Ber
(
1− (1− e−ε)γ

2

)
= Ber(1/(2eε

′
))

which again matchesMε′ (~x).
Our second step is the algorithmM2(~x), which executes U ←M1(~x) and then runs (S ◦RγnMOD) on the

input (U,0, . . . ,0), where RMOD is the modular arithmetic randomizer. By the post-processing property
of differential privacy (Fact 1.3.5),M2(~x) is also ε′-d.p.

Our third step is the algorithmM3(~x), which executes ~u← T (~x) and then runs the modular arithmetic
protocol (S ◦RγnMOD) on ~u. By Theorem 2.4.4, the following bound holds for every ~x ∈ {0,1}γn:

‖M3(~x)−M2(~x)‖TV ≤ γ · 2−σ =
γ

eε +1
· δ.

Given thatM3 behaves similarly toM2 on every input, we invoke the following technical lemma
which states that a close simulation of a pure differentially private algorithm results in an approximately
differentially private algorithm:

Lemma 2.4.7 (Lemma 1.2 [9]). LetM,M′ be algorithms such that for every ~w, ‖M(~w)−M′(~w)‖TV ≤ ∆. IfM
is (ε,0)-differentially private, thenM′ is (ε, (eε +1) ·∆)-differentially private.

This implies thatM3 is (ε′ ,δ′)-differentially private where δ′ = γ · eε
′
+1

eε+1 · δ. Note that δ′ is bounded
above by δ:

δ′ = γ · e
ε′ +1
eε +1

· δ

≤ γ ·
eε/γ +1
eε +1

· δ

≤ δ

Finally, notice that (S ◦ RγnOR)(~x) has the same distribution as M3(~x). Therefore, (S ◦ RγnOR) is also
(ε′ ,δ)-differentially private.
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2.4.2 The distinct elements protocol PDE
In this section, we present our distinct elements protocol. We will use the randomizer RDE, which

denotes the template randomizer RREP given access to ROR. We will also use the analyzer ADE, whose
pseudocode is presented in Algorithm 12.

Algorithm 12: ADE, analyzer for distinct elements

Input: ~y ∈ ([d]×Y )∗, where Y is the message space of RMOD

Output:
(z1, . . . , zd)←AREP(~y), instantiated with AMOD

ẑ←
∑d
j=1 zj

z← 2ẑeε−d
eε−1

Return z

Theorem 2.4.8. Fix any ε > 0, δ < 1, and n > 4. The protocol PDE = (RDE,ADE) has the following properties:

i. Each user sends at most O(d(log e
ε+1
δ + logn)) messages, each consisting of O(logd) bits.

ii. If ε > 1, the protocol is (2ε+2ln(1/γ),2δ)-robustly shuffle private. Otherwise it is (2εγ /γ,2δ)-robustly
shuffle private.

iii. PDE solves the (d,α,β)-distinct elements problem, where

α =
eε

eε − 1
·
√
2d ln

2
β

Proof. Part i is immediate from Theorem 2.4.5 and the fact that PREP executes POR d times, labeling
messages each time. Part ii is immediate from Lemma 2.2.3.

To prove Part iii, note that ẑ =
∑k
j=1 zj has expectation E [ẑ] = DE(~x)

2 + d−DE(~x)
2eε . In turn, the output of

PDE has expectation E

[
2ẑeε−d
eε−1

]
= DE(~x). A Hoeffding bound implies that

P

[∣∣∣PDE(~x)−DE(~x)
∣∣∣ > eε

eε − 1
·
√
2d ln

2
β

]
≤ β

This concludes the proof.

2.4.3 Adapting the protocol to large data universes

In this section, we show how to use public randomness to obtain a protocol with error O(n2/3). First,
we derive the following bound on the error introduced by hashing.

Lemma 2.4.9. Let k,k′ ∈ N such that k ≥ k′ . Let h be sampled uniformly from a 2-universal hash family H
mapping [k] to [k′]. Let S ⊆ [k] and S ′ := {s′ ∈ [k′] | ∃s ∈ S s.t. h(s) = s′} ⊆ [k′]. Then for all β ∈ (0,1),

P

h

[
|S | − |S ′ | ≥ |S |

2

βk′

]
≤ β.

Proof. Let X := |{(s, s′) ∈ S2 | s < s′ and h(s) = h(s′)}|, i.e. the number of collisions when hashing the set S.
Notice that |S ′ | = |{s′ ∈ S | ∀(s ∈ S s.t. s < s′) h(s) , h(s′)}|. This implies |S | − |S ′ | = |{s′ ∈ S | ∃s ∈ S s.t. s <
s′ and h(s) = h(s′)}| ≤ X. Since h is sampled uniformly from a 2-universal hash family, E[X] ≤ |S |2/k′ . The
result follows by Markov’s inequality.
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Given parameters d,d′ ∈N and input x ∈ [d], letRHDE be the local randomizer that (1) consults public
randomness to sample h uniformly from a 2-universal hash familyHmapping [d] to [d′] and (2) executes
RDE on h(x). Note that two different users executing RHDE will obtain the same h since they consult the
same source of randomness. We also emphasize that hashing is strictly for utility and is not used to add
privacy.

Theorem 2.4.10. Fix any ε > 0, δ < 1, and n > 2. Let d′ ← d2n4/3e. If d ≥ d′ , then the protocol PHDE =
(RHDE,ADE) has the following properties:

i. Each user sends at most O(n4/3(log e
ε+1
δ + logn)) messages of length O(logn).

ii. If ε > 1, the protocol is (2ε+2ln(1/γ),2δ)-robustly shuffle private. Otherwise it is (2εγ /γ,2δ)-robustly
shuffle private.

iii. PHDE solves the (d,α,β)-distinct elements problem for

α =
n2/3

β
+

eε

eε − 1
· 2n2/3

√
ln

4
β

Proof. The communication bound is immediate from Part i of Theorem 2.4.8. Next we prove the privacy
guarantees. For any h ∈ H and any ~x ∈ [k]n, let h(~x) := (h(x1), . . . ,h(xn)). Let ~x,~x ′ ∈ [d]n be neighboring
datasets. Then h(~x) and h(~x ′) are also neighboring datasets, so privacy follows from Part ii of Theorem
2.4.8.

We finally bound the error of the protocol. Let α1 = n2/3
β and α2 = eε

eε−1 · 2n
2/3

√
ln 4

β . Lemma 2.4.9 im-

plies P
[∣∣∣DE(h(~x))−DE(~x)∣∣∣ ≥ α1] < β/2. Also, Part iii of Theorem 2.4.8 implies P

[∣∣∣PDE(h(~x))−DE(h(~x))
∣∣∣ ≥ α2] <

β/2. By a union bound, we have that P
[∣∣∣PHDE(~x)−DE(~x)

∣∣∣ ≥ α1 +α2] < β.

2.5 Uniformity Testing

In this section, we assume i.i.d. sample access to an unknown distribution D over the finite universe
X = [d]; a uniformity tester uses these samples to distinguish the cases where the distribution is uniform
or far from uniform. Formally,

Definition 2.5.1 (Uniformity Testing). An algorithmM solves α-uniformity testing with sample complexity
m when:

• If ~x ∼Um, then P

[
M(~x) = “uniform”

]
≥ 2/3, and

• If ~x ∼Dm where ‖D−U‖TV > α, then P

[
M(~x) = “not uniform”

]
≥ 2/3

where the probabilities are taken over the randomness ofM and ~x.

Note that achieving an overall 2/3 success probability is essentially equivalent to achieving Ω(1)
separation between the probabilities of outputting “uniform” given uniform and non-uniform samples.
This is because any such ∆ separation can be amplified using O

(
1
∆2

)
repetitions. For this reason, we

generally focus on achieving any such constant separation.
When proving privacy statements, we will consider the number of data points n to be deterministic and

their values to be arbitrary. This standard approach decouples privacy from distributional assumptions.
But when bounding sample complexity, we rely on Poissonization: if n ∼ Pois(m), the count of different
elements j, j ′ ∈ [d] are independent over the randomness of drawing n which will greatly simplify
the analysis. Although Poissonization impacts the sample complexity, concentration ensures that n is
approximately m (Lemma 2.1.3). This means we can guarantee O(m) samples at the cost of a constant
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decrease in success probability.2 Because we generally focus on constant separations, we typically elide
the distinction between “sample complexity m” and “sample complexity distributed as Pois(m)”.

This section describes the uniformity testing protocol originally presented in joint work with Balcer
Joseph and Mao [8]. At a high level, our protocol imitates the pan-private uniformity tester of Amin
Joseph and Mao [6] (which itself imitates a centrally private uniformity tester suggested by Cai Daskalakis
and Kamath [19]). This tester maintains d-bin histogram, one for each element, and compares a χ2-style
statistic of the counts to a threshold to determine its decision. To ensure privacy, the algorithm adds
Laplace noise to each bin before computing the statistic.

Our shuffle protocol computes the same test statistic as [6] but this time using the values reported
by the private histogram template PREP (Section 2.2.1). We realize the template with the binary sum
protocol PSYM (Section 2.1). Recall that it adds symmetric noise for privacy like the Laplace mechanism;
we leverage this symmetry to show that our uniformity tester has sample complexity O(d3/4). We then
apply a binning trick—roughly, maintaining coarser counts for random groups of elements rather than
every element separately—to obtain our final uniformity tester with sample complexity O(d2/3) (Section
2.5.2).

Theorem 2.5.2 (Informal). Fix any ε = O(1), and 0 < α,δ < 1. There exists a protocol that is (ε,δ)-robustly
shuffle private and solves α-uniformity testing with sample complexity

m =O
((

d2/3

α4/3ε2/3
+
d1/2

αε
+
d1/2

α2

)
· ln1/2

(1
δ

))
.

For comparison, Acharya Canonne Freitag and Tyagi [1] uniformity testing under local privacy
demands Ω( d

α2ε2
) samples .

2.5.1 Preliminary Uniformity Tester

In this section, we give a preliminary private protocol for α-uniformity testing. It first compiles private
estimates of the sample counts for each element in [d]. This is achieved by running the SYM binary sum
protocol inside the REP template; specifically, the randomizer is

RUT(·) :=RREP(·,RSYM).

The analyzer then uses the private counts to compute a statistic Z ′ ; the pseudocode is presented in
Algorithm 13. We will show that Z ′ is larger than a threshold t when the underlying distribution is
sufficiently non-uniform and smaller when equal to uniform. The result is that the tester has sample
complexity scaling with d3/4; the next section shows how to use this tester as a black box to obtain a tester
with sample complexity scaling with d2/3.

Algorithm 13: AUT, an analyzer for private uniformity testing

Input: A message vector ~y ∈ ([d]× {0,1})∗
Output: A string in {“uniform”,“not uniform”}
~z←AREP(~y,ASYM)
Compute statistic Z ′← d

m

∑d
j=1((zj −m/d)2 − zj )

Return “not uniform” if Z ′ > t otherwise “uniform”

2We briefly sketch the argument. Let T denote a tester with Poissonized sample complexity m. Now consider the algorithm T ′
that takes 100m samples from the distribution D and feeds a random subset of n to T , where n←min(100m,Pois(m)). Lemma
2.1.3 implies that the statistical distance between T (DPois(m)) and T ′(D100m) is at most a constant.
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Theorem 2.5.3. For any ε = O(1) and 0 < α,δ < 1, there exists parameters λ > 0 and t ∈ R such that the
protocol PUT = (RUT,AUT) is

(
2ε/
√
γ,2δ

)
-robustly shuffle private and solves α-uniformity testing with sample

complexity

O

(
d3/4

αε
ln1/2

(1
δ

)
+

d2/3

α4/3ε2/3
ln1/3

(1
δ

)
+
d1/2

α2

)
.

Proof. We will choose λ exactly as in Claim 2.1.6 so that the robust shuffle privacy guarantee follows
immediately from Lemma 2.2.3. Thus, it remains to bound the sample complexity of the protocol.

Recall that we use cj (~x) to denote the count of j in ~x. Let ηj = zj − cj (~x), the error in the estimate of
cj (~x). We rewrite Z ′ in terms of ηj :

Z ′ =
d
m

d∑
j=1

[(
zj −

m
d

)2
− zj

]

=
d
m

d∑
j=1

[(
cj (~x) + ηj −

m
d

)2
− (cj (~x) + ηj )

]
(By definition)

=
d
m

d∑
j=1

[(
cj (~x)−

m
d

)2
− cj (~x)

]
︸                             ︷︷                             ︸

Z

+
d
m

d∑
j=1

η2j︸    ︷︷    ︸
A

+
2d
m

d∑
j=1

ηj ·
(
cj (~x)−

m
d

)
︸                      ︷︷                      ︸

B

− d
m

d∑
j=1

ηj

︸   ︷︷   ︸
C

We will show that, when D = U, this sum is below threshold t with probability ≥ 9/10. When
‖D −U‖TV > α, it is below τ with probability ≤ 3/5. The difference between these probabilities is a
constant, which suffices for our goal of constant success probability.

Case 1: D =U. Here, we shall bound each of the four terms Z,A,B,C. For sake of clarity, this section
will only bound the term B; we defer analyses of Z,A,C to Appendix A.4.

We first derive the expected value of B:

E [B] =
2d
m

d∑
j=1

E

[
ηj · (cj (~x)−m/d)

]
=
2d
m

d∑
j=1

E

[
ηj

]
·E

[
cj (~x)−m/d

]
(Independence)

= 0

The final equality comes from the fact that cj (~x) ∼ Pois(m/d). Next, we obtain its variance:

Var[B] =
4d2

m2

d∑
j=1

Var
[
ηj · (cj (~x)−m/d)

]
(Independence)

=
4d2

m2

d∑
j=1

E

[
η2j

]
·E

[
(cj (~x)−m/d)2

]
−E

[
ηj

]2
·E

[
cj (~x)−m/d

]2
(Independence)

=
4d
m

d∑
j=1

E

[
η2j

]
(D =U)

=
d2λ
m
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The final equality comes from Claim 2.1.7. Via Chebyshev’s inequality,

P

B >
√

40d2λ
m

 ≤ 1/40. (2.8)

In Appendix A.4, we use similar steps to arrive at the following set of bounds:

Claim 2.5.4. Sample n ∼ Pois(m) and ~x ∼Un. There is a constant κ such that when m > κd1/2/α2, the following
inequalities hold in an execution of PUT(~x):

P

[
Z >

3α2m
250

]
< 1/40

P

A > d2λ4m
+

√
20d3λ2

m2

 < 1/40

P

C < −
√

10d3λ
m2

 < 1/40

By a union bound over (2.8) and Claim 2.5.4, the following holds with probability ≥ 9/10:

Z ′ = Z +A+B−C

<
3α2m
250︸ ︷︷ ︸
Z

+
d2λ
4m

+

√
20d3λ2

m2︸               ︷︷               ︸
A

+

√
40d2λ
m︸     ︷︷     ︸
B

+

√
10d3λ
m2︸     ︷︷     ︸
C

(2.9)

We will set threshold parameter t to the right-hand side of the above inequality. Thus, given uniform
samples, the protocol has probability at least 9/10 of correctly answering “uniform.”

Case 2: ‖D−U‖TV > α. Here, we lower bound the four terms Z,A,B,C. Again, we focus on the term B;
the analyses of Z,A,C are deferred to Appendix A.4.

Using the same steps as in Case 1, we find that the expectation of B is again 0. However, the variance
becomes a difficult quantity to bound because it is a function of E

[
(cj (~x)−m/k)2

]
. This quantity depends

on the identity of distribution D but all we have is the fact that ‖D −U‖TV > α. Thus, we shall use a
different technique to lower bound B.

From Claim 2.1.7, the distribution of each ηj is symmetric with mean zero. So for any input dataset
~x, B is a linear combination of random variables ηj that are symmetrically distributed about zero. In
Appendix A.4, we prove the following:

Claim 2.5.5. Let η1, . . . ,ηd be independent random variables where each ηj is symmetrically distributed over the
set {. . . ,−3/2,−1,−1/2,0,1/2,1,3/2, . . . } with mean zero. For any coefficients a1, . . . , ad ∈R, the random variable∑d
j=1ηj · aj is symmetrically distributed with mean zero.

Hence, we have

P [B ≥ 0] ≥ 1/2. (2.10)

To bound Z, A, and C, we follow the Chebyshev-based recipe:
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Claim 2.5.6. Sample n ∼ Pois(m) and ~x ∼ Dn where ‖D −U‖TV > α. There is a constant c such that when
m > cd1/2/α2, the following inequalities hold in an execution of PUT(~x):

P

[
Z <

α2m
15

]
< 1/30

P

A < d2λ4m
−
√

15d3λ2

m2

 < 1/30

P

C >
√

15d3λ
2m2

 < 1/30

By a union bound over (2.10) and Claim 2.5.6, the following is true with failure probability ≤ 3/5:

Z ′ >
α2m
15︸︷︷︸
Z

+
d2λ
4m
−
√

15d3λ2

m2︸               ︷︷               ︸
A

+ 0︸︷︷︸
B

−
√

15d3λ
2m2︸     ︷︷     ︸
C

(2.11)

We will prove that the right-hand side of (2.11) is larger than t. Since we only output “uniform” when
Z ′ < τ , this means the probability of erroneously reporting “uniform” is ≤ 3/5.

RHS(2.11)− t = α2m
15

+
d2λ
4m
−
√

15d3λ2

m2 −
√

15d3λ
2m2

− 3α2m
250

− d
2λ
4m
−
√

20d3λ2

m2 −

√
40d2λ
m

−
√

10d3λ
m2

>
4α2m
75

− 9d3/2λ
m

− 7dλ1/2

m1/2
− 6d3/2λ1/2

m

=
2α2m
75

− 9d3/2λ
m

− 6d3/2λ1/2

m︸                               ︷︷                               ︸
V

+
2α2m
75

− 7dλ1/2

m1/2︸              ︷︷              ︸
W

It will suffice to show that both V ,W are larger than 0. For some constant κ1, if m > κ1
α ·d

3/4 ·λ1/2 then
V > 0. For some constant κ2, if m > κ2

α4/3 d
2/3λ1/3 then W > 0.

2.5.2 Final Uniformity Tester

We now use a technique due to Acharya, Canonne, Han, Sun, and Tyagi [2] and Amin et al. [6]
(itself a generalization of a similar technique from Acharya et al. [1]) to reduce the sample complexity
dependence on d from d3/4 to d2/3. The idea is to reduce the size of the data universe [d] by grouping
random elements and then performing the test on the smaller universe [d̂]. The randomized grouping
also reduces testing distance—partitions may group together elements with non-uniform mass to produce
a group with near-uniform overall mass, thus hiding some of the original distance—but the reduction in
universe size outweighs this side-effect.

We first introduce some notation. Given a partition G of [d] into G1, . . . ,Gd̂ , let DG denote the
distribution over [d̂] such that the probability of sampling ĵ from DG is equal to the probability that j ∈ Gĵ
where j ∼D. Formally, P

[
DG = ĵ

]
=

∑
j∈Gĵ P [D = j].

Our work will rely on the following lemma:

Lemma 2.5.7 (Domain Compression [2, 6]). Let D be a distribution over [d] such that ‖D−U‖TV = α. If G is a
uniformly random of [d] into d̂ groups, then with probability ≥ 1/954 over G,

‖DG −U‖TV ≥ α ·

√
d̂

477
√
10d

.
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Applying this trick to reduce [d] to [d̂] and then running our initial protocol PUT = (RUT,AUT) on

[d̂] with distance parameter α̂ = α
√
d̂

477
√
10d

gives our final uniformity tester. The given asymptotic bound

requires different values of d̂ depending on parameter settings; these appear in the proof.

Theorem 2.5.8. Fix any ε = O(1), and 0 < α,δ < 1. There exists a protocol that is
(
2ε/
√
γ,2δ,1/2

)
-robustly

shuffle private and solves α-uniformity testing with sample complexity

m =O
((

d2/3

α4/3ε2/3
+
d1/2

αε
+
d1/2

α2

)
· ln1/2

(1
δ

))
.

Proof. The protocol assigns d̂ according to the following rule:

d̂ =


2 ifd

2/3ε4/3

α4/3 < 2

d ifd
2/3ε4/3

α4/3 > d
d2/3ε4/3

α4/3 otherwise

The users and analyzer determine the partition G using public randomness. User i reports RUT(wi)
where wi = ĵ iff xi ∈ Gĵ . The analyzer executes AUT but using the new dimension d̂ and new error
parameter α̂. Privacy is immediate from Theorem 2.5.3, so it remains to derive the sample complexity.

Suppose we could prove the following two statements for some large enough m:

• If users generate samples ~w from U, then P

[
PUT(~w) = “uniform”

]
≥ 1− 10−4, and

• If users generate samples ~w from DG where ‖DG −U‖TV > α̂, then P

[
PUT(~w) = “not uniform”

]
≥

1− 10−4

If ‖D −U‖TV > α, then by Lemma 2.5.7, ‖DG −U‖TV < α̂ with probability < 953/954. In the event that
‖DG −U‖TV ≥ α̂, the second bullet above tells us that the tester returns “uniform” with probability < 10−4.
So by a union bound, the the tester returns “uniform” with probability < 10−4 +953/954.

But if D =U, then DG =U and so the probability of “uniform” is ≥ 1−10−4. Because 1−10−4 − (10−4 +
953/954) is a positive constant, we can distinguish the two cases with large enough m.

So it remains to prove the two bullet points for large m. They will naturally follow from the sample
complexity guarantee of PUT (Theorem 2.5.3) for dimension d̂ and error α̂:

m =O
(
d̂3/4

α̂ε
ln1/2

(1
δ

)
+

d̂2/3

α̂4/3ε2/3
ln1/3

(1
δ

)
+
d̂1/2

α̂2

)

=O




d1/2d̂1/4

αε︸    ︷︷    ︸
T1

+
d2/3

α4/3ε2/3︸    ︷︷    ︸
T2

+
d

α2d̂1/2︸  ︷︷  ︸
T3


· ln1/2

(1
δ

)


(Value of α̂)

We split into cases based on d̂.
Case 1: d̂ = 2. Then d2/3ε4/3

α4/3 < 2, so d1/2 =O
(
α
ε

)
and d1/6 =O

(
α1/3

ε1/3

)
. Thus,

T1 + T2 + T3 = O
(
d1/2

αε
+
d1/2 · d1/6

α4/3ε2/3
+
d1/2d1/2

α2

)
= O

(
d1/2

αε
+
d1/2

αε
+
d1/2

αε

)
= O

(
d1/2

αε

)
.
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Case 2: d̂ = d. This means d < d2/3ε4/3

α4/3 , so d3/4 < d1/2ε
α and d1/6 < ε2/3

α2/3 . Thus,

T1 + T2 + T3 = O
(
d3/4

αε
+

d2/3

α4/3ε2/3
+
d1/2

α2

)
= O

(
d1/2

α2 +
d2/3

α4/3ε2/3

)
= O

(
d1/2

α2 +
d1/2 · d1/6

α4/3ε2/3

)
= O

(
d1/2

α2

)
.

Case 3: d̂ = d2/3ε4/3

α4/3 . By substitution,

T1 + T2 + T3 = O
(
d1/2(d2/3ε4/3α−4/3)1/4

αε
+

d2/3

α4/3ε2/3
+

d

α2(d2/3ε4/3α−4/3)1/2

)
= O

(
d2/3

α4/3ε2/3

)
The claimed bound follows by taking the sum over the three cases.



Chapter 3

The Limits of Robust Shuffle Privacy

The previous chapter gave robustly shuffle private protocols to solve a catalog of problems. These
protocols imply separations between local privacy and robust shuffle privacy. In this chapter, we prove
lower bounds that imply separations between central privacy and robust shuffle privacy. This will cement
robust shuffle privacy as having an intermediate degree of strength compared to the two established
notions.

Our lower bounds will use the following proof structure: transform a robustly private shuffle
protocol to an internally private online algorithm and then invoke lower bounds for internal privacy.
The transformation we present is a simplification of the transformation from robust shuffle privacy to
pan-privacy found in joint work with Balcer et al. [8] and Ullman [24].

Notational Conventions We reserve capital letters in plain math text to denote random variables. For
example, Si will denote the internal state of an online algorithm after processing user i’s data.

3.1 Distinct Elements

In this section, we will prove the following lower bound for the distinct elements problem (Defn.
2.4.1) under robust shuffle privacy.

Theorem 3.1.1 (Informal). Fix any n ≥ 2d, ε =O(1), δ = o(ε/n) and a constant β. Suppose there exists a shuffle
protocol P = (R,A) that solves the (d,α,β)-distinct elements problem and is (ε,δ)-robustly private for n users.
Then α =Ω

(√
d/ε+1/ε

)
.

Our proof is the combination of a transformation from robust shuffle privacy to internal privacy and
a lower bound for internally private distinct elements. We state the transformation first:

Lemma 3.1.2. Suppose there exists a shuffle protocol P that solves the (d,α,β)-distinct elements problem and
is (ε̃, δ̃)-robustly private for n users. Then there exists an online algorithm QP (Algorithm 14) that solves the
(d,α,β)-distinct elements problem and is (ε̃(1/2), δ̃(1/2))-internally private for n/2 users.

At a high level, the online algorithm1 uses the shuffle protocol to maintain a set of shuffle protocol
messages as its internal state. More concretely, the online algorithm initializes its internal state using
n/2 draws from the protocol randomizer R(1), processes the stream ~x by adding R(x1), . . . ,R(xn/2) to its
collection of messages, and finally applies the protocol analyzer A to this final internal state to produce

1Although it does not strictly follow the syntax in Definition 1.3.17, it is not hard to see that QP is a compact version of an online
algorithm: the internal update algorithm is contained within the for-loop and the output algorithm consists of the final line.
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output. Internal privacy follows from the original protocol’s robust shuffle privacy combined with our
incorporation of “dummy” messages into the state. By the original protocol’s accuracy guarantee, these
dummy messages – all generated from a single element– increase final error by at most 1.

We remark that the construction assumes n is even, but this constraint can be removed by using dn/2e
and bn/2cwhere appropriate. We avoid this technicality for sake of clarity.

Algorithm 14: QP , an online algorithm for distinct elements

Input: Data stream ~x ∈ [d]n/2; a shuffle protocol P = (R,A) for distinct elements
Output: An integer in [d]
Initialize internal state S0 as the messages produced by (S ◦Rn/2)(1, . . . ,1)
For i ∈ [n/2]

Let Si be the (shuffled) union of Si−1 and R(xi)
Return A(Sn/2)

Proof of Lemma 3.1.2. Privacy: The main idea of the proof is that, by the robust shuffle privacy of P , the

first draw from (S ◦Rn/2)(~1) ensures privacy of any internal state view. We make this explicit below.
Consider a neighboring pair ~x ∼ ~x ′ . We will use St (resp. S ′t) to denote the internal state at time

t as generated by QP (~x) (resp. QP (~x ′)). Observe that St ∼ (S ◦Rn/2+t)(1, . . . ,1,x1, . . . ,xt) and St ∼ (S ◦
Rn/2+t)(1, . . . ,1,x′1, . . . ,x

′
t).

Let i be the index on which ~x and ~x ′ differ. If i > t, then St must have the same distribution as S ′t .
Otherwise, we have two executions of (S ◦Rn/2+t) where the inputs differ on one index. Because the
number of executions of R is at least n/2, the robust shuffle privacy of P implies (ε̃(1/2), δ̃(1/2)) -internal
privacy.

Accuracy: Consider the vector ~w = (1, . . . ,1,x1, . . . ,xn/2) ∈ [d]n. By the accuracy guarantee of the
original shuffle protocol P , we have P

[
|P (~w)−DE(~w)| > α

]
< β. By the construction of QP , QP (~x) is

identically distributed to P (~w). Combining the triangle inequality and |DE(~x)−DE(~w)| ≤ 1, we conclude
QP solves the (α +1,β)-distinct elements problem.

Now we give a lower bound for approximate internal privacy. It is derived from Theorem 12 in
[51]. Although the authors stated their result for user-level pan-privacy, the same argument works for
record-level internal privacy (because they only invoke privacy of the internal state). The result is also
stated for pure differential privacy, but the proof concludes by recovering, for ω(1) elements, whether or
not those elements appeared in the stream; this reconstruction-style argument implies a lower bound for
approximate differential privacy:

Lemma 3.1.3 (Implicit in [51]). Fix any n ≥ d, ε =O(1), δ =O(1/n) and δ < β < 0.01. If online algorithm Q
solves the (d,α,β)-distinct elements problem and is (ε,δ)-internally private for n users, then α =Ω(

√
d).

We can strengthen Lemma 3.1.3 to incorporate ε.

Lemma 3.1.4. Fix any n ≥ d, ε = O(1), δ � eε−1
eε+1 · exp

(
− 2ε
eε−1

)
· 1n and eε+1

eε−1 · exp
(

2ε
eε−1

)
· δ < β < 0.01. If

online algorithm Q solves the (d,α,β)-distinct elements problem and is (ε,δ)-internally private for n users, then
α =Ω

(√
d/ε+1/ε

)
.

Proof. The term Ω(1/ε) in our lower bound comes from central differential privacy. We devote the rest of
the proof to the Ω(

√
d/ε ) term. We focus on the case where eε−1

eε+1d, e
ε−1
eε+1n, and eε+1

eε−1 are integers.
Let d′ = eε−1

eε+1 · d, n′ = eε−1
eε+1 · n, δ′ = eε+1

eε−1 · exp
(

2ε
eε−1

)
· δ, and α′ = eε+1

eε−1 · α. Let Q′ be the online algo-

rithm that initializes Q and then, for each received element j ∈ [d′], updates Q with the eε+1
eε−1 elements

(j,1), (j,2), (j,3) . . . each of which can be encoded into [d].
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We claim Q′ solves the (d′ ,α′ ,β)-distinct elements problem and is (O(1),δ′)-internally private for n′

users; our lower bound comes from invoking Lemma 3.1.3.
Privacy: On neighboring streams given to Q′ , the corresponding streams given to Q will differ on

exactly eε+1
eε−1 elements. By group privacy (Fact 1.3.2), Q′ is ( e

ε+1
eε−1 · ε =O(1),δ′)-internally private.

Accuracy: Because the stream given to it by Q′ has length n, Q outputs an α-accurate estimate of the
number of distinct elements in that stream (with probability at least 1− β). By our transformation, Q′
can multiply the estimate by eε−1

eε+1 to get an α′-accurate estimate of the number of distinct elements in the
original input stream.

We now apply Lemma 3.1.3 to Q′ . This is possible because δ� eε−1
eε+1 · exp

(
− 2ε
eε−1

)
· 1n implies δ′ � 1/n,

n ≥ d implies n′ ≥ d′ , and δ′ < β < 0.01. Thus, O(α′) =Ω(
√
d′ ) so that α =Ω(

√
d/ε ).

We can combine Lemma 3.1.2 and Lemma 3.1.4 to obtain Theorem 3.1.1.

3.2 Uniformity Testing

In this section, we obtain a lower bound for uniformity testing (Defn. 2.5.1) under robust shuffle
privacy.

Theorem 3.2.1. For any ε ≤ 1 and α < 1/8, any (ε,0)-robustly shuffle private protocol α-uniformity tester has
sample complexity

Ω

(
d2/3

α4/3ε2/3
+

√
d

α2 +
1
αε

)
.

Note that this lower bound is not directly comparable to the upper bound of Theorem 2.5.8, since the
former only applies to pure differential privacy while the latter satisfies approximate differential privacy.

We derive the lower bound by using essentially the same technique for distinct elements: we create
an online algorithm2 that initializes state using dummy data and then handle new stream elements as
shuffle protocol users contributing to a growing pool of repeatedly shuffled messages. Here, the dummy
data consists of samples from a uniform distribution. This has the effect of diluting the true samples and
worsens the testing accuracy, but to a controlled extent.

We note that the transformation can be applied to essentially any problem involving data drawn i.i.d.
from a distribution (like feature selection). For this reason, we state it as a standalone lemma. For any
distribution D over X and any b ∈ [0,1], we will use D(b) to denote the mixture b ·D+ (1− b) ·U.

Lemma 3.2.2 (Generalization of [8]). For any n > 12ln6 and any (ε̃, δ̃, τ)-robustly shuffle private protocol
P = (R,A), there exists an (ε̃(1/2), δ̃(1/2))-internally private algorithm QP such that

dTV(QP (Un/2),P (Un)) = 0 (3.1)

and, for any distribution D over X ,

dTV(QP (Dn/2),P (Dn
(1/4))) < 1/6. (3.2)

Proof. The privacy argument is essentially identical to that of Lemma 3.1.2. The only difference is that the
dummy data now consists of random values. However, since this dummy data is still independent of the
true data, we can apply the same argument to translate robust shuffle privacy into internal privacy.

It remains to prove (3.1) and (3.2). In the case where user data ~X is drawn i.i.d. from U, observe
that every execution of Rmade by QP is on an independent sample from U. Because there are n such

2As with Algorithm 14, Algorithm 15 does not strictly obey the syntax of Definition 1.3.17 but is a compact version of an online
algorithm.
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Algorithm 15: QP , an online algorithm built from a shuffle protocol

Input: Data stream ~x ∈ X n/2; a shuffle protocol P = (R,A) for n users
Create initial state S0← (S ◦Rn/2)(Un/2)
Sample M ∼ Bin(n,1/4)
Set M←min(M,n/2)
For i ∈ [n/2]

If i ≤M : Wi ← xi ;
Else Wi ∼U;
Create the state Si by shuffling the messages from Si−1 with those from R(Wi)

Return A(Sn/2)

executions and the output of QP is obtained by runningA on the set of generated messages, we have that
QP (Un/2) is equivalent in distribution to (A◦S ◦Rn)(Un) = P (Un).

Otherwise, consider n samples from D(1/4). The number of samples drawn from D is distributed as
Bin(n,1/4). By a multiplicative Chernoff bound, we have that P [Bin(n,1/4) > n/2] < 1/6. Thus the TV
distance between Bin(n,1/4) and the distribution of the truncated random variable M is at most 1/6. In
turn, the TV distance between

P (Dn
(1/4)) =A(S(

n terms︷                                  ︸︸                                  ︷
R(D), . . . ,R(D)︸            ︷︷            ︸
Bin(n,1/4) terms

,R(U), . . . ,R(U)))

and

QP (Dn/2) =A(S(

n terms︷                                  ︸︸                                  ︷
R(D), . . . ,R(D)︸            ︷︷            ︸

M terms

,R(U), . . . ,R(U)))

is at most 1/6 as well.

We apply Lemma 3.2.2 to the special case of uniformity testing:

Corollary 3.2.3. If P is an (ε̃, δ̃, τ)-robustly shuffle private protocol that solves α-uniformity testing with sample
complexity n > 12ln6, then QP is an (ε̃(τ), δ̃(τ))-internally private algorithm that solves 4α-uniformity testing
with sample complexity n/2.

Proof. Privacy follows immediately from Lemma 3.2.2, so we devote the rest of the proof to the accuracy
claim.

For any b, observe that dTV(D(b),U) = b ·dTV(D,U). This implies that QP solves 4α-uniformity testing
whenever P solves α-uniformity testing:

• On inputs drawn from U,QP simulates P (Un) exactly. Thus, it will report “uniform” with probability
at least 2/3.

• On inputs drawn from D where dTV(D,U) > 4α, QP simulates P (Dn
1/4) to within 1/6 in TV-distance.

Thus, it will report “uniform” with probability at most 1/3+1/6 = 1/2.

The distance between 2/3 and 1/2 is a constant which suffices for testing.

Next, we present a lower bound for internal privacy. As with the distinct elements lower bound
(Lemma 3.1.4), it was originally stated as a lower bound for pan-privacy but the argument only relies on
privacy of the internal state.
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Lemma 3.2.4 (Theorem 3 from Amin et al. [6]). For ε = O(1) and α < 1/2, any ε-internally private α-
uniformity tester has sample complexity

Ω

(
d2/3

α4/3ε2/3
+

√
d

α2 +
1
αε

)
.

Theorem 3.2.1 is immediate from Corollary 3.2.3 and Lemma 3.2.4.

3.3 Feature Selection and Related Problems

In this section we prove a lower bound for the feature selection problem (Defn. 2.1.13).

Theorem 3.3.1. If P is an (ε,δ)-robustly shuffle private protocol that solves (α,d)-selection and δ logd/δ �
α2ε2/d, then its sample complexity is n =Ω(

√
d/αε).

The technique we use is in fact general enough to imply lower bounds for a host of problems including
learning, hypothesis testing, and sparse mean estimation (see Table 1.2 and Section 3.3.5).

3.3.1 Technique overview

As with with the uniformity testing problem, we will leverage Lemma 3.2.2 so that it will suffice to
prove lower bounds for internal privacy; we give a high-level outline of our approach to obtain these
lower bounds. We will ignore the parameter δ in this discussion for brevity, but our results also apply
when δ is moderately small.

For any probability distribution D, let Dn be the product distribution consisting of n copies of D;
in other words, a sample from Dn consists of n i.i.d. samples from D. Let {Dv}v∈V be some family of
distributions over the same domain X . Using V to denote a random variable distributed uniformly over
V , Dn

V is the uniform mixture of product distributions.
Using U to denote the uniform mixture of {Dv}v∈V , Un is the product distribution consisting of n

copies of the uniform mixture U. Note that U1 = D1
V but the equality does not hold for larger n: each

sample in Dn
V depends on V but each sample in Un is i.i.d.

We will give lower bounds that show no (ε,δ)-internally private algorithm can distinguish Un from
Dn
V . We will choose the family {Dv} so that any algorithm solving feature selection (or any of the other

related problems) must distinguish Un from Dn
V , which is how we will obtain sample-complexity lower

bounds.
For background, we briefly recap the way to use this setup to prove lower bounds under non-

interactive local privacy. Here, one chooses the data from the mixture Dn
V , and a lemma of Duchi, Jordan,

and Wainwright [26] gives a bound on the mutual information between the output of the protocol P and
the identity of the random mixture component V :

I(P (Dn
V );V ) =O(n · ε2 · ‖{Dv}‖2∞→2) (3.3)

where the (∞→ 2)-norm3

‖{Dv}‖2∞→2 = sup
f :X→[±1]

E

V

( E

x∼DV

[f (x)]− E

x∼U
[f (x)]

)2
3We call this quantity the (∞→2)-norm because it is equal to the better known (∞→2)-norm, supz ‖Mz‖2/‖z‖∞, of the matrix M

defined by Mv,x =Dv (x)−U (x).
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is the crucial quantity determining how hard these distributions are to distinguish subject to local
differential privacy. For intuition, note that this quantity satisfies the relationship

‖{Dv}‖2∞→2 ≤ E

V

 sup
f :X→[±1]

(
E

x∼DV

[f (x)]− E

x∼U
[f (x)]

)2 = 4 ·E
V

[
dTV(DV ,U)2

]
,

but it can be much smaller than 4 ·EV (dTV(DV ,U)2), which is crucial for proving tight lower bounds.
Given this lemma, and a construction of a hard distribution family such that ‖{Dv}‖2∞→2 is small, it is

not hard to deduce a lower bound on the number of samples n required to identify the specific mixture
component V . It is also not too difficult to construct a family of hard distributions for all of our problems
of interest (see Section 3.3.3).

With this state-of-affairs, it is tempting to argue that a mutual-information bound analogous to (3.3)
holds for internally private algorithms. However, we can simulate the pointer-chasing result (Theorem
2.3.6) by an internally private algorithm; the implication is that the mutual information can be unbounded,
showing that the purely information-theoretic approach used to prove lower bounds for the local model
cannot work for internal privacy.4

Nonetheless, we prove the following indistinguishability lemma for any internally private Q:

dTV(Q(Un),Q(Dn
V )) ≤O(n · ε · ‖{Dv}‖∞→2) (3.4)

Although this bound is quantitatively somewhat weaker than (3.3)—in ways that are actually crucial
to avoid proving false statements—it is nonetheless sufficient to give tight lower bounds for all of the
problems we consider. The value of this lemma is that, even though the information-theoretic bounds
that are used in the local model are false for the pan-private model, the exact same constructions of hard
distributions can be used to obtain lower bounds for internal privacy! And in turn, we obtain lower
bounds for pan-privacy and robust shuffle privacy.

The proof of (3.4) uses a hybrid argument, where we transition between data sampled from Un and
data sampled from Dn

V . Namely, we fix a value of i between 0 and n and consider the case where the
first i inputs are sampled from Ui and the remaining n− i inputs are sampled from Dn−i . We then bound
the total variation distance between the i-th case and the (i +1)-st case and apply the triangle inequality.
In each step, we carefully argue that the total variation distance between the two cases follows from
a careful application of (3.3) to the algorithm that computes the internal state after viewing the first i
inputs, which is why we ultimately get a bound of a similar form.

3.3.2 Main lower bound for internal privacy

Let Q be an (ε,δ)-internally private algorithm. Let {Dv}v∈V be a family of distributions, V be uniform
over V , and U = E

V
[DV ] be the uniform mixture over the distributions.

The main goal of this section is to prove the following theorem.

Theorem 3.3.2. If {Dv}v∈V is a family of distributions and Q is an (ε,δ)-internally private algorithm such that 5

δ log |V |δ � ε2‖{Dv}‖2∞→2 and dTV(Q(Dn
V ),Q(U

n)) is larger than a positive constant, then

n ≥Ω

(
1

ε‖{Dv}‖∞→2

)
More generally, n ≥ 1/O(ε‖{Dv}‖∞→2 +

√
δ log |V |δ )

4PHIST crucially uses the full generality of (ε,δ)-differential privacy for δ > 0, however, even for stricter variants of differential
privacy where the mutual information is bounded, we do not know how to obtain a mutual-information bound as strong as (3.3)
for any of these variants.

5We use x� y to indicate that x ≤ cy for a sufficiently small numerical constant c > 0.
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The main tool we use to prove Theorem 3.3.2 is the following information inequality.

Lemma 3.3.3. For any (ε,δ)-internally private algorithm Q,

dTV(Q(Dn
V ),Q(U

n)) ≤ n ·
√

1
2 Iε,δ({Dv})

where we define Iε,δ({Dv}) = sup Q:X→Z
(ε,δ)-DP

I(Q(DV );V )

Proof of Lemma 3.3.3. As a shorthand, let Bi denote the distribution of Q(Ui ,Dn−i
V ). This is the distribution

of the algorithm’s output on a data stream where the first i elements are sampled i.i.d. from U and the
rest from DV . Note that B0 =Q(Dn

V ) and Bn =Q(Un). By the triangle inequality we have

dTV(Q(Dn
V ),Q(U

n)) = dTV(B0,Bn) ≤
n∑
i=1

dTV(Bi−1,Bi).

Thus, in order to prove the theorem it is enough to show that for every i = 1, . . . ,n,

dTV(Bi−1,Bi) ≤
√

1
2 Iε,δ({Dv}) (3.5)

Before proving (3.5), we give a simplified diagram of the relevant random variables in the two
distributions Bi−1,Bi in Figure 3.1. For the purposes of comparing Bi−1 and Bi , we can group all of
the inputs X1, . . . ,Xi−1 ∼Ui−1 into one random variable and all of the inputs Xi+1···n ∼Dn−i

V into another
random variable. Moreover, in Bi−1, Xi is drawn from DV , for the same choice of V as Xi+1···n, whereas in
Bi , Xi is drawn from U.

XiX1···i−1 Xi+1···n

V

Si Sn

XiX1···i−1 Xi+1···n

V

Si Sn

Figure 3.1: A simplified diagram of the relevant random variables in Bi−1 (left) and Bi (right). Xi is the
i-th sample. V determines the sampling distribution and the internal states Si ,Sn are computed from the
samples. Arrows indicate dependence.

Observe that the random variables Si and Xi+1···n have the same marginal distributions in both Bi−1,Bi .
But the joint distributions are distinct: in Bi−1, they are correlated by the shared choice of V while in Bi ,
they are independent. Moreover, Sn is a post-processing of the pair (Si ,Xi+1···n). Thus, using (Si ,Xi+1···n) to
denote the joint distribution of Si(V ) and Xi+1···n(V ) in Bi−1, and applying the data-processing inequality,
we have

dTV(Bi−1,Bi) ≤ dTV((Si ,Xi+1···n), (Si ⊗Xi+1···n))

≤ E

si∼Si

[
dTV(Xi+1···n|Si=si ,Xi+1···n)

]
(3.6)

where the last inequality uses the following fact.

Fact 3.3.4. If (A,B) and (A,B′) are joint distributions, dTV((A,B), (A,B′)) ≤ E

a∼A
[dTV(B|A=a,B′ |A=a)].
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Proof. Given a set T ⊆ A×B, define T |A=a = {b : (a,b) ∈ T }. Then, we have

dTV((A,B), (A,B
′))

= sup
T

P [(A,B) ∈ T ]−P
[
(A,B′) ∈ T

]
= sup

T
E

a∼A

[
P [B|A=a ∈ T |A=a]−P

[
B′ |A=a ∈ T |A=a

]]
≤ sup

T
E

a∼A

[
dTV(B|A=a,B′ |A=a)

]
= E

a∼A

[
dTV(B|A=a,B′ |A=a)

]
This completes the proof.

Next, since Si and Xi+1···n are independent conditioned on V , we have

E

si∼Si

[
dTV(Xi+1···n|Si=si ,Xi+1···n)

]
≤ E

si∼Si

[
dTV(V |Si=si ,V )

]
(3.7)

where we use the following fact.

Fact 3.3.5. If (A,B,C) are jointly distributed random variables and A and B are independent conditioned on C,
then for every a ∈ supp(A), dTV(B|A=a,B) ≤ dTV(C|A=a,C).

Proof. Let T be an arbitrary subset of B, then we have

P [B ∈ T | A = a]−P [B ∈ T ]
= E

c∼C|A=a
[P [B ∈ T | A = a,C = c]]− E

c∼C
[P [B ∈ T | C = c]]

= E

c∼C|A=a
[P [B ∈ T | C = c]]− E

c∼C
[P [B ∈ T | C = c]] (conditional independence)

≤ sup
f :C→[0,1]

E

c∼C|A=a
[f (c)]− E

c∼C
[f (c)]

= dTV(C|A=a,C)

where the final inequality is because f (c) = P [B ∈ T | C = c] is a function mapping C → [0,1]. Therefore
we have

dTV(B|A=a,B) = sup
T

P [B ∈ T | A = a]−P [B ∈ T ] ≤ dTV(C|A=a,C),

as desired.

From this point we can calculate

E

si∼Si

[
dTV(V |Si=si ,V )

]
≤

√
E

si∼Si

[
dTV(V |Si=si ,V )2

]
(Jensen’s Inequality)

≤
√

E

si∼Si

[
1
2 ·dKL(V |Si=si ‖V )

]
(Pinsker’s Inequality)

=
√

E

si∼Si

[
1
2 ·dKL((Si ,V )‖(Si ⊗V ))

]
(chain rule for KL-divergence)

≤
√

1
2 · I(Si ;V ) (definition of mutual information)

Lastly, we argue that I(Si ;V ) ≤ Iε,δ({Dv}) using privacy. The intuition is that privacy requires Si to be
(ε,δ)-differentially private as a function of the prefix X1, . . . ,Xi . Moreover, X1, . . . ,Xi−1 are drawn from the
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fixed distribution Ui−1 that is independent from V . Therefore, we can fix the distribution of X1, . . . ,Xi−1
and view Si as an (ε,δ)-differentially private algorithm of just Xi .

Specifically, given an (ε,δ)-internally private algorithm Q and index i ∈ [n], define the function
fi : X →R as follows: fi(x) samples X1, . . . ,Xi−1 ∼ Ui−1, computes s1 = Q1(X1), s2 = Q2(X2, s1), . . . , si−1 =
Qi−1(Xi−1, si−2), and outputs r = Qi(x,si−1). Internal privacy guarantees that fi(x) = Qi(X1, . . . ,Xi−1,x)
is (ε,δ)-differentially private as a algorithm of x. Note that Si |Xi=x is distributed identically as fi(x).
Therefore, √

1
2 I(Si ;V ) =

√
1
2 I(Qi(DV );V ) ≤

√
1
2 Iε,δ({Dv})

Combining with the previous calculations gives

dTV(Bi−1,Bi) ≤
√

1
2 Iε,δ({Dv}),

as desired.

To use Lemma 3.3.3 we need a bound on the mutual information Iε,δ({Dv}). A result of Duchi, Jordan,
and Wainwright [26], gives such a bound for the case of δ = 0.

Lemma 3.3.6 ([26]). Iε,0({Dv}) ≤O(ε2‖{Dv}‖2∞→2).

We give a simple extension to the case of δ > 0.

Lemma 3.3.7. Iε,δ({Dv}) ≤O(ε2‖{Dv}‖2∞→2 + δ log
|V |
δ ).

Therefore, we will obtain Theorem 3.3.2 as an immediate corollary of Lemma 3.3.3 and Lemma 3.3.7.
The proof of Lemma 3.3.7 from Lemma 3.3.6 relies on Lemma 1.3.10.

Proof of Lemma 3.3.7. LetM be any (ε,δ)-differentially private function with input x ∈ X . Lemma 1.3.10
guarantees that there exists a mechanism Q′ that is (2ε,0)-differentially private and satisfies

∀x ∈ X dTV(M(x),Q′(x)) ≤ δ

In particular, dTV(M(DV ),Q′(DV )) ≤ δ. Therefore, there exists a joint distribution (M,Q′) such that
M =M(DV ), Q′ = Q′(DV ) and P [M ,Q′] ≤ δ. Let B be the binary random variable 1 [M ,Q′]. Thus,
there is a joint distribution (M,Q′ ,B) such that (B = 0 =⇒ R = R′) and P [B , 0] ≤ δ. Therefore,

I(V ;R) ≤ I(V ;M,Q′ ,B)
≤ I(V ;M,Q′ | B) +H(B)

= I(V ;M,Q′ | B = 0) ·P [B = 0] + I(V ;M,Q′ | B = 1) ·P [B = 1] +H(B)

≤ I(V ;Q′) +H(V )δ+H(B)

= I(V ;Q′) +O(δ log |V |+ δ log(1/δ))
≤ I2ε,0({Dv}) +O(δ log |V |+ δ log(1/δ))
=O(ε2‖{Dv}‖2∞→2) +O(δ log |V |+ δ log(1/δ))

The lemma now follows by rewriting the final expression as O(δ log |V |δ ).

3.3.3 A family of hard distributions

In order to apply Theorem 3.3.2 to a learning or optimization problem, we need a family of distribu-
tions {Dv} such that ‖{Dv}‖∞→2 is small and any accurate algorithm for the problem distinguishes Dn

V
from Un. This subsection describes one such family we will use in most of our lower bound arguments.
Throughout, we fix integer d > 2 and α ∈ (0,1/2).
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Let X = {±1}d be the data domain. For a non-empty set ` ⊆ [d] and a bit b ∈ {±1}d , we define the
distribution Dd,`,b,α to be uniform on {±1}d except biased so that Ex∼Dd,α,`,b,α

(
∏
i∈t xi) = 2αb. Its probability

mass function is

Dd,`,b,α(x) =

(1 + 2α)2−d if
∏
i∈t xi = b

(1− 2α)2−d if
∏
i∈t xi = −b

(3.8)

Note that, by construction, for every non-empty t′ , t, Ex∼Dd,`,b,α
(
∏
i∈t′ xi) = 0.

For any positive integer k ≤ d, we define the family

Dd,k,α = {Dd,`,b,α : t ⊆ [d], |t| ∈ [k],b ∈ {±1}} (3.9)

We also define the quantity
( d
≤k

)
:=

∑k
j=1

(d
j

)
. The following two facts are immediate from the definition of

Dd,k,α :

Fact 3.3.8. The size of the family Dd,k,α is 2 ·
( d
≤k

)
.

Fact 3.3.9. The uniform mixture over the family Dd,k,α is uniform over X .

The following lemma is implicit in many lower bounds for local differential privacy (e.g. [26, 57, 31]),
although we reprove it here for completeness.

Lemma 3.3.10. ‖Dd,k,α‖2∞→2 ≤ 4α2/
( d
≤k

)
Proof. We begin by expanding the definition of the (∞→ 2) norm:

‖Dd,k,α‖2∞→2 = sup
f :X→[±1]

∑
D∈Dd,k,α

1
|Dd,k,α |

·
(
E

x∼D
[f (x)]− E

x∼U
[f (x)]

)2

= sup
f :X→[±1]

∑
t⊆[d],|t|∈[k]
b∈{±1}

1
|Dd,k,α |

·

 ∑
x∈{±1}d

f (x) · (Dd,`,b,α(x)−U(x))


2

= sup
f :X→[±1]

1

2
( d
≤k

) · ∑
t⊆[d],|t|∈[k]
b∈{±1}

 ∑
x∈{±1}d

f (x) · (Dd,`,b,α(x)−U(x))


2

(3.10)

The final equality comes from Fact 3.3.8. Note that (3.8) is equivalent to Dd,`,b,α(x) = (1 + 2αb ·
∏
i∈t xi)2

−d

and, via Fact 3.3.9, U(x) = 2−d . Thus,

(3.10) = sup
f :X→[±1]

1

2
( d
≤k

) · ∑
t⊆[d],|t|∈[k]
b∈{±1}

 ∑
x∈{±1}d

f (x) · 2αb ·
∏
i∈t
xi · 2−d


2

= sup
f :X→[±1]

2α2( d
≤k

) · ∑
t⊆[d],|t|∈[k]
b∈{±1}

 ∑
x∈{±1}d

f (x) ·
∏
i∈t
xi · 2−d


2

= sup
f :X→[±1]

4α2( d
≤k

) · ∑
t⊆[d],|t|∈[k]

 ∑
x∈{±1}d

f (x) ·
∏
i∈t
xi · 2−d


2

≤ sup
f :X→[±1]

4α2( d
≤k

) ·∑
t⊆[d]

 ∑
x∈{±1}d

f (x) ·
∏
i∈t
xi · 2−d


2

(3.11)
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Define f̂ (t) := E

X∼U
[f (X) ·

∏
i∈tXi], the Fourier transform over the Boolean hypercube. This is precisely the

term being squared above. So we have

(3.11) =
4α2( d
≤k

) · sup
f :X→[±1]

∑
t⊆[d]

f̂ (t)2

=
4α2( d
≤k

) · sup
f :X→[±1]

E

X∼U

[
f (X)2

]
(Parseval’s identity)

≤ 4α2( d
≤k

)
This concludes the proof.

The following is an immediate corollary of Theorem 3.3.2, Lemma 3.3.10, and Fact 3.3.8.

Theorem 3.3.11. Let Dd,L,B,2α denote a distribution chosen uniformly at random from Dd,k,α (where L is a
uniformly random subset of [d] with size ≤ k and B is a uniformly random member of {±1}). If M is an (ε,δ)-
internaly private algorithm such that δ log( d≤k)/δ � α2ε2/

( d
≤k

)
and dTV(M(Dn

d,L,B,α),M(Un)) is larger than a
positive constant, then

n ≥Ω


√( d
≤k

)
αε


3.3.4 Lower bounds for feature selection

Theorem 3.3.12. If Q = (Q1, . . . ,Qn,QO) is an (ε,δ)-internally private algorithm that solves (α,d)-selection and
δ logd/δ� α2ε2/d, then its sample complexity is n =Ω(

√
d/αε).

Proof. Let Dd,L,B,α denote a distribution chosen uniformly at random fromDd,1,α . We show that Q implies
another (ε,δ)-internally private algorithm Q′ where the total variation distance between Q′(Un) and
Q′(Dn

d,L,B,α) is at least a positive constant.
Let Rad(α) be the distribution over {±1} with mean α. For any i ∈ [n], define Q′i to be the internal

update algorithm that does the following on input xi :

1. Draw independent sample Yi from Rad(α)

2. Wi ← (xi,1,xi,2, . . . ,xi,d ,Yi)

3. Output Qi(Wi , si−1) if i > 1 else Q1(W1)

Q′ is the online algorithm defined by (Q′1, . . . ,Q′n,QO). It is (ε,δ)-internally private by virtue of using
Q, so it remains to lower bound the TV distance between Q′(Un) and Q′(Dn

d,L,B,α).

dTV(Q′(Un),Q′(Dn
d,L,B,α))

≥ P

[
Q′(Un) = d +1

]
−P

[
Q′(Dn

d,L,B,α) = d +1
]

= P

[
Q(Dn

d+1,{d+1},+1,α/2) = d +1
]
−P

[
Q′(Dn

d,L,B,α) = d +1
]

(3.12)

≥ 99
100
−P

[
Q′(Dn

d,L,B,α) = d +1
]

(3.13)

To obtain (3.12), observe that Q′ feeds into Q a stream of n i.i.d. samples from a product distribution
where the (d + 1)-th coordinate has mean α, while the rest have mean 0. In our notation, this product
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distribution is Dd+1,{d+1},+1,α/2. Meanwhile, the inequality in (3.13) follows from the fact that Q solves
(α,d +1)-selection.

We now upper bound the probability in (3.13).

P

[
Q′(Dn

d,L,B,α) = d +1
]

= P

[
Q′(Dn

d,L,B,α) = d +1, B = −1
]
+P

[
Q′(Dn

d,L,B,α) = d +1, B = +1
]

≤ 1
2
+P

[
Q′(Dn

d,L,B,α) = d +1, B = +1
]

=
1
2
+

d∑
j=1

P

[
Q′(Dn

d,{j},+1,α) = d +1
]
·P [T = {j},B = +1] (3.14)

We focus our attention on the first term in the product. Observe that Q′ feeds to Q a stream of n iid
samples drawn from a distribution where coordinate j ∈ [d] has mean 2α, coordinate d +1 has mean α,
and every other coordinate has mean 0. Here, j is the correct answer to (α,d +1) selection; since Q solves
(α,d +1)-selection, P

[
Q′(Dn

d,{j},+1,α) = d +1
]
≤ 1/100. As a result,

(3.14) ≤ 1
2
+

d∑
j=1

1
100
·P [L = {j},B = +1] =

1
2
+

1
100

=
51
100

Thus, dTV(Q′(Un),Q′(Dn
d,L,B,α)) ≥ 99/100− 51/100 = 12/25. From Theorem 3.3.11, we conclude that

n =Ω

(
1

ε‖Dd,1,α‖∞→2

)
=Ω

(√
d/αε

)
.

The claimed theorem now follows by rescaling d.

We now adapt our proof to the robust shuffle privacy setting. For readability, we repeat the theorem
statement from the beginning of the section:

Theorem (Restatement of Theorem 3.3.1). If P is an (ε,δ)-robustly shuffle private protocol that solves
(α,d)-selection and δ logd/δ� α2ε2/d, then its sample complexity is n =Ω(

√
d/αε).

Proof. As before, let Dd,L,B,α denote a distribution chosen uniformly at random fromDd,1,α . LetQP denote
the (O(ε),O(δ))-internally private algorithm given by Lemma 3.2.2. Like the preceding proof, we show
that QP implies an (ε,δ)-internally private algorithm Q′ that distinguishes between Un/2 and Dn/2

d,L,B,α . We
construct Q′ essentially identically, the differences being that we have n/2 instead of n internal algorithms.

To bound the total variation distance between Q′(Un/2) and Q′(Dn/2
d,L,B,α) we follow the same steps as

in the proof of Theorem 3.3.12 except we need to account for the reduction from robust shuffle privacy to
internal privacy (Lemma 3.2.2)

dTV(Q′(Un/2),Q′(Dn/2
d,L,B,α))

≥ P

[
Q′(Un/2) = d +1

]
−P

[
Q′(Dn/2

d,L,B,α) = d +1
]

= P

[
Q(Dn/2

d+1,{d+1},+1,α/2) = d +1
]
−P

[
Q′(Dn/2

d,L,B,α) = d +1
]

≥ P

[
P (Dn

d+1,{d+1},+1,α/9) = d +1
]
− 1
6
−P

[
Q′(Dn/2

d,L,B,α) = d +1
]

(Lemma 3.2.2)

≥ 99
100
− 1
6
−P

[
Q′(Dn/2

d,L,B,α) = d +1
]

≥ 99
100
− 1
6
−
(1
2
+

1
100

+
1
6

)
(Lemma 3.2.2)

=
11
75
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As before, we invoke Theorem 3.3.11 to conclude that n =Ω(
√
d/αε). The claimed theorem follows from

rescaling α and d.

3.3.5 Other lower bounds

Here, we use Theorem 3.3.2 and the same family Dd,k,α to obtain lower bounds for other problems.
We define these problems below and state the results; because the proofs have a repetitive structure, they
are deferred to Appendix A.5.

Definition 3.3.13 (d-Wise Simple Hypothesis Testing). Let d be any integer larger than 1 and let α be
any real in the interval (0,1/2). An algorithmM solves d-wise simple hypothesis testing with error α and
sample complexity n if, for any set of d distributions P satisfying dTV(D,D′) ≥ α for every distinct pair
D,D′ ∈ P , when given n independent samples from an arbitrary D ∈ P as input, the algorithm outputs D
with probability ≥ 99/100. This probability is over the randomness of the samples observed byM and
M itself.

Theorem 3.3.14. If Q is an (ε,δ)-internally private algorithm that solves d-wise simple hypothesis testing with
error α and δ logd/δ� α2ε2/d, then its sample complexity is n =Ω(

√
d/αε).

Theorem 3.3.15. If P is an (ε,δ)-robustly shuffle private protocol that solves d-wise simple hypothesis testing
with error α and δ logd/δ� α2ε2/d, then its sample complexity is n =Ω(

√
d/αε).

Definition 3.3.16. Let α be any real in the interval (0,1/2) and let k ≤ d be any integers larger than 1. An
algorithmM solves (d,k,α)-sparse mean estimation with sample complexity n if, for any distribution D over
{±1}d whose mean ~µ satisfies ‖~µ‖0 ≤ k, it receives n independent samples from D as input and outputs
~V ∈ [−1,+1]d such that ‖~µ− ~V ‖∞ ≤ α with probability at least 99/100. This probability is taken over the
randomness of the samples observed byM andM itself.

Theorem 3.3.17. If Q is an (ε,δ)-internally private algorithm that solves (d,1,α)-sparse mean estimation and
δ logd/δ� α2ε2/d, then its sample complexity is n =Ω(

√
d/αε).

Theorem 3.3.18. If P is an (ε,δ)-robustly shuffle private protocol that solves (d,1,α)-sparse mean estimation and
δ logd/δ� α2ε2/d, then its sample complexity is n =Ω(

√
d/αε).

Definition 3.3.19. Let α be any real in the interval (0,1/2) and let k ≤ d be any integers larger than 1. An
algorithmM releases width-k parities with error α and sample complexity n if it takes n independent samples
from a distribution D over {±1}d and reports a function F : 2[d]→R such that

P

~X∼Dn
F∼M(~X)

∀` ⊆ [d], |`| ≤ k

∣∣∣∣∣∣∣∣F(`)− E

x∼D

∏
j∈`

xj


∣∣∣∣∣∣∣∣ ≤ α

 ≥ 99/100.

This probability is taken over the randomness of the samples observed byM andM itself.

Theorem 3.3.20. If Q is an (ε,δ)-internally private algorithm that releases width-k parities with error α and

δ log( d≤k)/δ� α2ε2/
( d
≤k

)
, then its sample complexity is n =Ω(

√( d
≤k

)
/αε).

Theorem 3.3.21. If P is an (ε,δ)-robustly shuffle private protocol that releases width-k parities with error α and

δ log( d≤k)/δ� α2ε2/
( d
≤k

)
, then its sample complexity is n =Ω(

√( d
≤k

)
/αε).
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3.4 Parity Learning

In this section we give lower bounds on the sample complexity of (agnostic) parity learning. We
define the domain to be X = {±1}d+1 and interpret the bits at index d +1 to be labels of the strings. Our
focus will be on signed parity functions: given a tuple (`,b) ∈ 2[d] × {±1} and a string x ∈ X , we would like
labels to predict the value b ·

∏
j∈` xj . Specifically, for any distribution D over X , we define error function

errD(`,b) := P

X∼D

b ·∏
j∈`

Xj , Xd+1

,
to be the probability of misclassifying a random test example.

Definition 3.4.1. Let α ∈ (0,1/2) be a parameter and let 1 ≤ k ≤ d be integers. An algorithmM learns
width-k signed parities with error α and sample complexity n if it takes n independent samples from a
distribution D over X and reports a tuple (L,B) ∈ 2[d] × {±1} such that, with probability at least 99/100,

errD(L,B) <min
`,b

errD(`,b) +α.

This probability is taken over the randomness of the samples observed byM andM itself.

Theorem 3.4.2. If Q is an (ε,δ)-internally private algorithm that learns width-k signed parities with error α and

δ log( d≤k)/δ� α2ε2/
( d
≤k

)
, then its sample complexity is n =Ω(

√( d
≤k

)
/αε).

Theorem 3.4.3. If P is an (ε,δ)-robustly shuffle private protocol that learns width-k signed parities with error α

and δ log( d≤k)/δ� α2ε2/
( d
≤k

)
, then its sample complexity is n =Ω(

√( d
≤k

)
/αε).

We will use the same technique developed for feature selection (Section 3.3), but this time combining
Theorem 3.3.2 with a different family of distributions. For any α ∈ [0,1/2] and any ` ⊆ [d], and a bit
b ∈ {±1}, we define the distribution Cd,`,b,α to have probability mass function

Cd,`,b,α(x) =

(1 + 2α)2−d−1 if b ·
∏
j∈` xj = xd+1

(1− 2α)2−d−1 if b ·
∏
j∈` xj = −xd+1

(3.15)

Fact 3.4.4. For any (`′ ,b′) , (`,b),

P

X∼Cd,`,b,α

b ·∏
j∈`

Xj = Xd+1

 = 1
2
+α

P

X∼Cd,`,b,α

b′ ·∏
j∈`′

Xj = Xd+1

 ≤ 1
2

For dimension d, a parameter k ≤ d, and α ∈ [0,1/2], we define the family

Cd,k,α = {Cd,`,b,α : ` ⊆ [d], |`| ≤ k,b ∈ {±1}} (3.16)

The following facts about Cd,k,α are straightforward to verify.

Fact 3.4.5. The size of the family Cd,k,α is 2
( d
≤k

)
+2.

Fact 3.4.6. The uniform mixture of the family Cd,k,α is uniform over X .

We can also bound the (∞→ 2) norm.
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Lemma 3.4.7. For every d ∈N, k ≤ d, and α ∈ [0,1/2],

‖Cd,k,α‖2∞→2 ≤
4α2( d
≤k

)
Proof. The proof proceeds almost identically with the proof of Lemma 3.3.10. Recall that we now take
X = {±1}d+1. We begin by expanding the definition of the (∞→ 2) norm:

‖Cd,k,α‖2∞→2 = sup
f :X→[±1]

∑
C∈Cd,k,α

1
|Cd,k,α |

·
(
E

x∼C
[f (x)]− E

x∼U
[f (x)]

)2

= sup
f :X→[±1]

∑
t⊆[d],|t|≤k
b∈{±1}

1
|Cd,k,α |

·

∑
x∈X

f (x) · (Cd,t,b,α(x)−U(x))

2

= sup
f :X→[±1]

1

2
( d
≤k

)
+2
·

∑
t⊆[d],|t|≤k
b∈{±1}

∑
x∈X

f (x) · (Cd,t,b,α(x)−U(x))

2 (3.17)

The final equality comes from Fact 3.4.5. Note that (3.15) is equivalent to Cd,t,b,α(x) = (1 + 2αb ·
∏
i∈t xi ·

xd+1)2−d−1. We also have from Fact 3.4.6 that U(x) = 2−d−1. Thus,

(3.17) = sup
f :X→[±1]

1

2
( d
≤k

)
+2
·

∑
t⊆[d],|t|≤k
b∈{±1}

∑
x∈X

f (x) · 2αb ·
∏
i∈t
xi · 2−d−1

2

= sup
f :X→[±1]

2α2( d
≤k

)
+1
·

∑
t⊆[d],|t|≤k
b∈{±1}

∑
x∈X

f (x) ·
∏
i∈t
xi · 2−d−1

2

= sup
f :X→[±1]

4α2( d
≤k

)
+1
·

∑
t⊆[d],|t|≤k

∑
x∈X

f (x) ·
∏
i∈t
xi · 2−d−1

2

≤ sup
f :X→[±1]

4α2( d
≤k

) ·∑
t⊆[d]

∑
x∈X

f (x) ·
∏
i∈t
xi · 2−d−1

2 (3.18)

Define f̂ (t) := E

X∼U
[f (X) ·

∏
i∈tXi], the Fourier transform over the Boolean hypercube. This is precisely the

term being squared above. So we have

(3.18) =
4α2( d
≤k

) · sup
f :X→[±1]

∑
t⊆[d]

f̂ (t)2

=
4α2( d
≤k

) · sup
f :X→[±1]

E

X∼U

[
f (X)2

]
(Parseval’s identity)

≤ 4α2( d
≤k

)
This concludes the proof.

We now prove our lower bound on internally private parity learning. To do so, we rely on Algorithm
16 which transforms an online algorithm for the learning problem into one that distinguishes distributions.
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Algorithm 16: Q′ , an online algorithm

Input: Data stream ~x ∈ Xm; access to online algorithm Q : X n→ 2[d] × {±1}
Output: A random variable Z ∈R
S1←Q1(x1)
For i ∈ [2,n]

Si ←Qi(xi ,Si−1)
For i ∈ [n+1,m]

If i = n+1 :
(L̂, B̂)←QO(Sn)
Z ∼ Lap(1/ε)

Else
(L̂, B̂,Z)← Si−1

If
∏
j∈L̂ xi,j = xi,d+1 · B̂ :
Z← Z +1

Si ← (L̂, B̂,Z)
Return Z

Proof of Theorem 3.4.2. Analogous to the proof of Theorem 3.3.12, let Cd,L,B,α denote a distribution chosen
uniformly at random from Cd,k,α . We argue that Q′ is both (ε,δ)-internally private and, when given
m = n +Θ(1/αε) values from X as input, outputs a real number such that dTV(Q′(Um),Q′(Cmd,L,B,α)) is
larger than a constant. This allows invocation of Theorem 3.3.2.

At a high level, Q′ has a training and a testing phase. In the training phase, it will execute Q on
the first n samples to obtain a signed parity function (L̂, B̂). In the testing phase, Q′ will evaluate the
function on the remaining samples and maintain an internally private estimate of the number of correct
predictions. If the samples are drawn from the uniform mixture U, then any choice of parity function
makes a correct prediction with only 1/2 probability (from Fact 3.4.4). But if the samples are drawn from
any distribution Cd,`,b,α ∈ Cd,k,α , we know that (L̂, B̂) = (`,b) with ≥ 99/100 probability; conditioned on
this event, our predictions will be correct with probability 1/2+α (again from Fact 3.4.4). Thus, the count
of correct predictions will reliably differentiate between the two input cases.

Privacy: We will first prove privacy for user i and intrusion time t. Specifically, we consider two
arbitrary streams ~x,~x ′ ∈ Xm that differ on index i. If i ≤ n, (ε,δ)-internal privacy follows immediately
from the (ε,δ)-internal privacy of Q: the state observed by the adversary either precedes i (t < i) or is a
post-processing of a (ε,δ)-private algorithm (t ≥ i).

Otherwise, the state observed by the adversary either precedes i or is a tuple (L̂, B̂,Z), where the first
two elements are independent of user i and the third is distributed as

∑t
u=n+11

[∏
j∈L̂ xu,j = xu,d+1 · B̂

]
+

Lap(1/ε). Because the summation is 1-sensitive, we obtain ε-differential privacy from the Laplace
mechanism (Lemma 1.3.6).

Bound on TV distance: Now we show that the total variation distance betweenQ′(Um) andQ′(Cmd,L,B,α)
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is larger than a constant. Notice that, for any τ ∈R,

dTV(Q′(Cmd,L,B,α),Q
′(Um))

≥ P

[
Q′(Cmd,L,B,α) > τ

]
−P

[
Q′(Um) > τ

]
=


∑

`⊆[d],|`|≤k
b∈{±1}

P

[
Q′(Cmd,`,b,α) > τ

]
·P [(L,B) = (`,b)]

−P[
Q′(Um) > τ

]

=


∑

`⊆[d],|`|≤k
b∈{±1}

P

[
Q′(Cmd,`,b,α) > τ | (L̂, B̂) = (`,b)

]
·P

[
(L̂, B̂) = (`,b)

]
·P [(L,B) = (`,b)]

−P[
Q′(Um) > τ

]

≥


∑

`⊆[d],|`|≤k
b∈{±1}

P

[
Q′(Cmd,`,b,α) > τ | (L̂, B̂) = (`,b)

]
· 99
100
·P [(L,B) = (`,b)]

−P[
Q′(Um) > τ

]
(3.19)

(3.19) comes from the fact that Q learns parities. Notice that, conditioned on (L̂, B̂) = (`,b), Fact 3.4.4
impliesQ′(Cmd,`,b,α) is a sample from the convolution Bin(m−n,1/2+α)+Lap(1/ε) with probability ≥ 99/100.

Meanwhile, note that the equality P

X∼U

[∏
j∈`Xj = Xd+1 · b

]
= 1/2 holds for any parity function (`,b).

Consequently, the output of the algorithm Q′(Um) is a sample from the convolution Bin(m − n,1/2) +
Lap(1/ε).

Because m−n =Θ(1/αε), we can use a Chernoff bound to argue that there is some τ where

(3.19) ≥


∑

`⊆[d],|`|≤k
b∈{±1}

99
100
· 99
100
·P [(L,B) = (`,b)]

− 1
100

=
992 − 100
10000

Lemma 3.4.7 and Theorem 3.3.2 imply m =Ω

(√( d
≤k

)
/αε

)
and, in turn, n =Ω

(√( d
≤k

)
/αε

)
.

We conclude the section by proving our lower bound on robustly shuffle private parity learning.

Proof of Theorem 3.4.3. We repeat the construction, this time building Q′ from QP (the online algorithm
derived from P via Lemma 3.2.2). To prove privacy of Q′ , we follow the same steps as in the proof of
Theorem 3.4.2; we do not replicate the text here.

Lower bounding the total variation distance between Q′(Um) and Q′(Cnd,L,B,α) is also very similar
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though we do have to account for the change from P to QP :

dTV(Q′(Cmd,L,B,α),Q
′(Um))

=


∑

`⊆[d],|`|≤k
b∈{±1}

P

[
Q′(Cmd,`,b,α) > τ | (L̂, B̂) = (`,b)

]
·P

[
(L̂, B̂) = (`,b)

]
·P [(L,B) = (`,b)]

−P[
Q′(Um) > τ

]

≥


∑

`⊆[d],|`|≤k
b∈{±1}

P

[
Q′(Cmd,`,b,α) > τ | (L̂, B̂) = (`,b)

]
·
( 99
100
− 1
6

)
·P [(L,B) = (`,b)]

−P[
Q′(Um) > τ

]

≥


∑

`⊆[d],|`|≤k
b∈{±1}

99
100
· 247
300
·P [(L,B) = (`,b)]

− 1
100

=
99
100
· 247
300
− 1
100

=
8051
10000

Lemma 3.4.7 and Theorem 3.3.2 imply m =Ω

(√( d
≤k

)
/αε

)
and, in turn, n =Ω

(√( d
≤k

)
/αε

)
.



Chapter 4

Single-Message Shuffle Privacy

The earlier chapters focused on shuffle protocols that satisfy the constraint of robust differential
privacy. This chapter focuses on protocols that limit the communication of each user to one message.

4.1 Binary Sums via Randomized Response

Randomized response is a straightforward distributed protocol for binary sums. It originates from work
dating back to Warner in 1965 [60]. Here, each user i reports a single message bit yi ←RRR(xi) whose
bias encodes xi ∈ {0,1}. We detail the randomizer and analyzer below. p ∈ (0,1) is a public parameter
which determines the level of noise in each bit.

RRR(x) :=

Ber(1/2) with probability p

x otherwise

ARR(~y) :=
n∑
i=1

1
1− p

· (yi − p/2)

Before analyzing randomized response as a shuffle protocol, we first interpret it as local protocol.
Specifically, we show it is necessary to choose a large value of p (near 1/2) to achieve (ε,δ)-local privacy.

Theorem 4.1.1. If RRR is (ε,δ)-differentially private, then p ≥ 2(1−δ)
eε+1

Proof. We will first obtain the probability that RRR outputs 1 on input 1, and then on input 0.

P [RRR(1) = 1] = p · 1/2+ (1− p)
= 1− p/2

P [RRR(0) = 1] = p · 1/2
= p/2

Due to our privacy constraint, it must be the case that

P [RRR(1) = 1] ≤ eε ·P [RRR(0) = 1] + δ

1− p/2 ≤ eε · (p/2) + δ

p ≥ 2(1− δ)
eε +1

This concludes the proof.

67
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Due to this lower bound on p, the variance of the estimate reported by ARR must be linear in the
number of users. This matches impossibility results by Beimel, Nissim, and Omri [14] and Chan, Shi, and
Song [21].

But when we change the objective from local privacy to robust shuffle privacy, much greater accuracy
is possible.

Theorem 4.1.2. For ε ≤ 1, sufficiently small δ, and n = Ω(1ε ln
1
δ ), there exists a choice of parameter p ∈ (0,1)

such that randomized response PRR = (RRR,ARR) satisfies (ε,δ)-robust shuffle privacy and estimates binary sums
up to error

O

1ε
√
log

1
δ


with probability ≥ 99/100.

For comparison, PSYM achieves the same asymptotic error without having a lower bound on n
(Theorem 2.1.4). On the other hand, there is no bound on the maximum number of messages a user in
PSYM will send.

Our first step in proving Theorem 4.1.2 is stating the error of the protocol in terms of p. As usual, the
accuracy analysis is done under the assumption that all users obey the protocol (γ = 1).

Claim 4.1.3 (Accuracy of PRR). For any n ∈N, x ∈ {0,1}n, and p,β ∈ (0,1) such that p > 4
n ln

2
β , the protocol

PRR = (RRR,ARR) estimates the sum with error behaving as follows:

P


∣∣∣∣∣∣∣PRR(x)−∑i xi

∣∣∣∣∣∣∣ >
√
2np ln

2
β
·
(

1
1− p

) ≤ β
Proof. We first show each term in the analyzer’s summation, 1

1−p · (yi − p/2), is an unbiased estimate of xi :

E

[
1

1− p
· (yi − p/2)

]
=

1
1− p

· (E [yi]− p/2)

=
1

1− p
· ((p · 1/2+ (1− p) · xi)− p/2)

= xi

We now derive the variance of each term in the summation:

Var
[

1
1− p

· (yi − p/2)
]
=

(
1

1− p

)2
·Var[yi]

=
(

1
1− p

)2
·
p

2
·
(
1−

p

2

)
Each term in the sum is an independent random variable with mean xi , variance σ2 =

(
1

1−p

)2
· p2 ·

(
1− p2

)
,

and magnitude at most m = 1
1−p . Because p > 4

n ln
2
β , we have that nσ

2

m2 > ln 2
β : an additive Chernoff bound

implies the claimed inequality.

The next step in proving Theorem 4.1.2 is to analyze privacy guarantees of the protocol.

Claim 4.1.4 (Robust Shuffle Privacy of PRR). Fix ε ≤ 1 and δ < 4e−9. If n > 208
ε2

ln 4
δ and we assign p ←

104
ε2n
· ln 4

δ , then PRR is (ε/√γ,δ)-robustly shuffle private. If 208
ε ln 4

δ ≤ n ≤
208
ε2

ln 4
δ and p← 1−

√
ε2n

832ln(4/δ) , then
PRR is (ε/γ,δ)-robustly shuffle private.
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To see how the error bound in Theorem 4.1.2 follows from the above choice of p, consider the two
parameter regimes:

1. When ε� 1/
√
n then p ≈ 1

ε2n

√
ln(1/δ)� n, so the bound in Claim 4.1.3 is O(

√
np ln(1/β)), which

yields the desired bound.

2. When ε� 1/
√
n then 1− p ≈ ε

√
n/

√
ln(1/δ)� n, so the bound in Claim 4.1.3 is O

(√
n ln(1/β)
1−p

)
, which

yields the desired bound.

In the remainder of this section, we will prove Claim 4.1.4. Our work will proceed in two stages. First,
we will express the privacy guarantees of the protocol as a function of p and honest fraction γ . Then we
choose p such that honest users are guaranteed (ε,δ)-differential privacy when γ = 1. When γ < 1, the ε
privacy parameter will grow by a factor of either 1/γ or 1/

√
γ , depending on its initial size.

4.1.1 Privacy as a function of p

Our goal will be to prove the following claim:

Claim 4.1.5. For any δ < 4e−9, γn > 52ln 4
δ , and min(p,1−p) ≥ 52

γn ln
4
δ , the algorithm (S ◦RγnRR) is (ε̃(p,γ),δ)-

differentially private, where

ε̃(p,γ) =

√
52ln 4

δ

γnp
·

1− p+2

√
p ln 4

δ

γn


Proof. We will borrow some elements from the proof of Claim 2.1.6. Recall Lemma 1.3.16: proving that
Mγn,RR is (ε̃,δ)-differentially private for all γ ≥ τ will imply that PRR is (ε̃,δ,τ)-robustly shuffle private
for n users. And recall thatMγn,RR is the algorithm that, on input x1, . . . ,xγn, outputs the histogram
which counts the occurrences of {0,1} as produced by RRR(x1), . . . ,RRR(xγn).

Because the number of messages is γn, the frequency of 0 is computable from the frequency of 1: if
h0,h1 count zeroes and ones, respectively, then h0 = γn− h1. By post-processing (Fact 1.3.5), it suffices to
prove that the count of ones as produced by RRR(x1), . . . ,RRR(xγn) is an (ε̃(p,γ),δ)-differentially private
algorithm.

Algorithm 17:Mm,p(x1 . . .xm)

Input: (x1 . . .xγn) ∈ {0,1}m, parameter p ∈ (0,1).
Output: y ∈ {0,1,2, . . . ,m}

Sample s ∼ Bin (m,p)
DefineHs = {H ⊆ [m] : |H | = s} and choose H ∈ Hs uniformly at random
Return y←

∑
i<H xi +Bin

(
s, 12

)
When m = γn, we argue thatMm,p (Algorithm 17 above) is precisely that algorithm. In the execution

of RRR(x1), . . . ,RRR(xm), let G denote the set of users who report Ber(1/2). Notice that G is distributed
identically with H inMp: its size is Bin(γn,p) and its members are uniformly random. Conditioning
on G =H , this means the sum that is output byMp(~x) is

∑
i∈GBer(1/2) +

∑
i<G xi =

∑
i∈H Ber(1/2) +

∑
i<H ,

which is precisely the count of ones as produced by RRR(x1), . . . ,RRR(xm).
Thus, our proof will be complete when we prove the following claim aboutMm,p:
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Claim 4.1.6. For any δ < 2e−9, m > 52ln 2
δ , and min(p,1− p) ≥ 52

m ln 2
δ ,Mm,p is (ε,2δ) differentially private,

where

ε =

√
52ln 2

δ

mp
·

1− p+2

√
p ln 2

δ

m


To prove Claim 4.1.6, we first show that for any sufficiently large H , the final step (encapsulated by

Algorithm 18) will ensure differential privacy for some parameters.

Algorithm 18:Mm,H

Input: (x1 . . .xm) ∈ {0,1}m, parameter H ⊆ [m].
Output: yH ∈ {0,1,2, . . . ,m}

Sample η ∼ Bin
(
|H |, 12

)
Return yH ←

∑
i<H xi + η

Claim 4.1.7. For any δ < 2e−9 and any H ⊆ [m] where |H | > 26ln 2
δ ,Mm,H is (ε,δ)-differentially private for

ε = ln

1+
√

26ln 2
δ

|H |

 <
√

26ln 2
δ

|H |

Proof. Notice that the function f (~x) :=
∑
i<H xi is 1-sensitive, as changing one user’s value between {0,1}

changes the sum by at most 1. Thus, the privacy guarantee immediately follows from Lemma 1.3.7.

Next, we consider the case where H is a random subset of [m] with a fixed size s. For any sufficiently
large value s and randomly chosen H where |H | = s, the privacy parameters improve significantly in the
regime where s is close to n. This is an amplification via sampling argument and an earlier example of the
argument can be found in prior work by Kasiviswanathan et al. [49].

As with the addition of binomial noise, we treat the sampling of H as the modular procedure
Algorithm 19.

Algorithm 19:Mm,s

Input: (x1, . . . ,xm) ∈ {0,1}m, parameter s ∈ {0,1,2, . . . ,m}.
Output: ys ∈ {0,1,2, . . . ,m}

DefineHs = {H ⊆ [m] : |H | = s} and choose H ←Hs uniformly at random
Return ys←Mm,H (x)

Claim 4.1.8. For any δ < 2e−9 and any 26ln 2
δ < s < m,Mm,s is (ε,δ) differentially private for

ε =

√
26ln 2

δ

s
·
(
1− s

m

)
Proof. Fix ~x ∼ ~x ′ ∈ {0,1}n where xj , x′j . Mm,s(~x) selects H uniformly from Hs and runsMm,H (~x); let H

denote the realization of H . To enhance readability, we will use the shorthand ε0(s) :=
√

26log 2
δ

s . For any
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W ⊂ {0,1,2, . . . ,m}, we aim to show that

P

H,Mm,H

[
Mm,H (~x) ∈W

]
− δ

P

H,Mm,H

[
Mm,H (~x ′) ∈W

] ≤ exp
(
ε0(s) ·

(
1− s

n

))

First, we have

P

H,Mm,H

[
Mm,H (~x) ∈W

]
− δ

P

H,Mm,H

[
Mm,H (~x ′) ∈W

]
=

P

H,Mm,H

[
Mm,H (~x) ∈W, j ∈H

]
+ P

H,Mm,H

[
Mm,H (~x) ∈W, j <H

]
− δ

P

H,Mm,H

[
Mm,H (~x ′) ∈W, j ∈H

]
+ P

H,Mm,H

[
Mm,H (~x ′) ∈W, j <H

]
=

P

H,Mm,H

[
Mm,H (~x) ∈W | j ∈H

]
·P [j ∈H] + P

H,Mm,H

[
Mm,H (~x) ∈W | j <H

]
·P [j <H]− δ

P

H,Mm,H

[
Mm,H (~x ′) ∈W | j ∈H

]
·P [j ∈H] + P

H,Mm,H

[
Mm,H (~x ′) ∈W | j <H

]
·P [j <H]

(4.1)

For brevity’s sake, we will use the following shorthand

q := P [j <H] = (1− s/m)

τ(~x) := P

Mm,H

[
Mm,H (~x) ∈W | j ∈H

]
ζ(~x) := P

Mm,H

[
Mm,H (~x) ∈W | j <H

]
When user j outputs a uniformly random bit, their private value has no impact on the distribution. This
means τ(~x) = τ(~x ′) and we therefore have

(4.1) =
(1− q)τ(~x) + qζ(~x)− δ
(1− q)τ(~x) + qζ(~x ′)

(4.2)

Since s = |H | is sufficiently large, by Claim 4.1.7 we have ζ(~x) ≤ (1 + ε0(s)) ·min{ζ(~x ′), τ(~x)}+ δ.

(4.2) ≤
(1− q)τ(~x) + q · (1 + ε0(s)) ·min{ζ(~x ′), τ(~x)}+ δ)− δ

(1− q)τ(~x) + qζ(~x ′)

≤
(1− q)τ(~x) + q · (1 + ε0(s)) ·min{ζ(~x ′), τ(~x)}

(1− q)τ(~x) + qζ(~x ′)

=
(1− q)τ(~x) + q ·min(ζ(~x ′), τ(~x)) + q · ε0(s) ·min{ζ(~x ′), τ(~x)}

(1− q)τ(~x) + qζ(~x ′)

≤
(1− q)τ(~x) + qζ(~x ′) + q · ε0(s) ·min{ζ(~x ′), τ(~x)}

(1− q)τ(~x) + qζ(~x ′)

= 1+
q · ε0(s) ·min{ζ(~x ′), τ(~x)}

(1− q)τ(~x) + qζ(~x ′)
(4.3)



72 CHAPTER 4. SINGLE-MESSAGE SHUFFLE PRIVACY

Observe that min{ζ(~x ′), τ(~x)} ≤ (1− q)τ(~x) + qζ(~x ′), so

(4.3) ≤ 1+ q · ε0(s)

= 1+ ε0(s) ·
(
1− s

m

)
≤ exp

(
ε0(s) ·

(
1− s

m

))
= exp


√

26log 2
δ

s
·
(
1− s

m

)
which completes the proof.

Finally, we show that when the size s is chosen randomly then s is sufficiently large with high
probability.

Proof of Claim 4.1.6. Given that min(p,1− p) ≥ 52
m ln 2

δ , the variance of s ∼ Bin(m,p) is sufficiently large to

invoke an additive Chernoff bound. Specifically, s ≥mp − 2
√
mp(1− p) ln 2

δ with probability 1− δ. Note
that this means

s ≥mp − 2
√
mp ln

2
δ

≥mp/2 (mp ≥ 16ln 2
δ )

≥ 26ln
2
δ

(p ≥ 52
m ln 2

δ )

For this range of s, we can invoke Claim 4.1.8. Our claim follows by substituting s ≥mp/2 into the term√
26ln 2

δ
s and then s ≥mp − 2

√
mp ln 2

δ into the term 1− s
m .

4.1.2 Setting p for target Privacy

Claim 4.1.5 tells us that (S ◦RγnRR) satisfies (ε̃(p,γ),δ)-differential privacy, where

ε̃(p,γ) =

√
52ln 4

δ

γnp
·

1− p+2

√
p ln 4

δ

γn


Given the above bound, we now choose a value of p that guarantees a target level of (ε,δ)-differential

privacy for the honest users when γ = 1. For any other γ ∈ [1/2,1], the privacy guarantee weakens by a
factor of either

√
1/γ or 1/γ . We remark that we do not optimize for the constants.

Claim (Restatement of Claim 4.1.4). Fix ε ≤ 1 and δ < 4e−9. If n > 208
ε2

ln 4
δ and we assign p← 104

ε2n
· ln 4

δ ,
then PRR is (ε/

√
γ,δ)-robustly shuffle private.

If 208
ε ln 4

δ ≤ n ≤
208
ε2

ln 4
δ and p← 1−

√
ε2n

832ln(4/δ) , then PRR is (ε/γ,δ)-robustly shuffle private.

Proof. As suggested by the structure of the claim, the proof proceeds by case analysis.
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Case 1: n > 208
ε2

ln 4
δ . If we could show that min(p,1 − p) ≥ 52

γn ln
4
δ , we can invoke Claim 4.1.5 to

conclude that PRR satisfies (ε/
√
γ,δ)-robust shuffle privacy:

ε̃(p,γ) =

√
52ln 4

δ

γnp
·

1− p+2

√
p ln 4

δ

γn


<

√
52ln 4

δ

γnp
(Bound on min(p,1− p))

< ε/
√
γ (Choice of p)

It remains to prove min(p,1− p) ≥ 52
γn ln

4
δ . The inequality p ≥ 52

γn ln
4
δ is immediate from the fact that

γ ≥ 1/2, ε ≤ 1. And we also have that p ≤ 1/2 due to lower bound on n.

Case 2: 208
ε ln 4

δ ≤ n ≤
208
ε2

ln 4
δ . In this regime, p = 1−

√
ε2n

832ln(4/δ) . Note that p ≥ 1/2 due to the upper

bound on n. Once again, if we could show that min(p,1 − p) ≥ 52
γn ln

4
δ , we can invoke Claim 4.1.5 to

conclude that PRR satisfies (ε/γ,δ)-robust shuffle privacy:

ε̃(p,γ) =

√
52ln 4

δ

γnp
·

1− p+
√

2p ln 4
δ

γn


=

√
52ln 4

δ

γnp
·


√

ε2n
832ln(4/δ)

+

√
2p ln 4

δ

γn

 (Choice of p)

= ε/
√
16pγ +

√
104ln 4

δ

γn

≤ ε/
√
8γ +

√
104ln 4

δ

γn
(p ≥ 1/2)

< ε/γ (n > 208
ε ln 4

δ )

It remains to prove min(p,1− p) ≥ 52
γn ln

4
δ . Since p ≥ 1/2, it will suffice to prove

√
ε2n

832ln(4/δ) ≥
52
γn ln

4
δ .

n >
208
ε

ln
4
δ

n3/2 >
(208
ε

ln
4
δ

)3/2
ε3/2 ·

√
n

832ln(4/δ)
≥ 104

n
ln

4
δ

≥ 52
γn

ln
4
δ

(γ ≥ 1/2)

The proof is complete since ε > ε3/2 for 0 < ε ≤ 1

4.2 The Limits of Single-Message Shuffle Privacy

In this section, we present a technique to obtain lower bounds for single-message shuffle protocols.
Recall that these are the class of protocols where each user sends exactly one message to the shuffler. We
use removal lemmas that give a structural characterization of such protocols: if we remove the shuffler
of a single-message shuffle protocol, we are left with a local protocol whose privacy parameters can be



74 CHAPTER 4. SINGLE-MESSAGE SHUFFLE PRIVACY

expressed in terms of the original protocol. We can therefore invoke local privacy lower bounds to obtain
lower bounds for single-message shuffle privacy.

4.2.1 Pure differential privacy (δ = 0)

The first removal lemma concerns pure differential privacy. It originated in joint work with Balcer [7].

Lemma 4.2.1 (Pure D.P. Removal Lemma). If a single-message protocol P = (R,A) satisfies pure shuffle privacy,
then removing the shuffler leaves behind a pure locally private protocol. Specifically, R must satisfy ε-differential
privacy on its own whenever P is ε-shuffle private.

Looking back at Table 1.1, this result means every lower bound in the local privacy column can be
adapted to single-message pure shuffle privacy without loss.

Proof of Lemma 4.2.1. Assume for contradiction that R is not ε-differentially private. So there are values
x,x′ ∈ X and a set Y ⊆ Y such that

P [R(x) ∈ Y ] > eε ·P
[
R(x′) ∈ Y

]
.

Let ~x = (x, . . . ,x︸ ︷︷ ︸
n copies

) and ~x ′ = (x′ , x, . . . ,x︸ ︷︷ ︸
n−1 copies

). Now consider Y n, the set of message vectors where each message

belongs to Y .

P

[
(S ◦Rn)(~x) ∈ Y n

]
= P

[
Rn(~x) ∈ Y n

]
= P [R(x) ∈ Y ]n

> eε ·P
[
R(x′) ∈ Y

]
·P [R(x) ∈ Y ]n−1

= eε ·P
[
(S ◦Rn)(~x ′) ∈ Y n

]
which contradicts the fact that (S ◦Rn) is ε-differentially private.

4.2.2 Approximate differential privacy (δ > 0)

To obtain lower bounds under approximate differential privacy, we must use a different lemma
derived in joint work with Smith Ullman Zeber and Zhilyaev [23].

Lemma 4.2.2 (Approximate D.P. Removal Lemma). If a single-message protocol P = (R,A) satisfies (ε,δ)-
shuffle privacy for n users, then R must satisfy (ε+ lnn,δ)-differential privacy on its own.

Proof. By assumption, P is (ε,δ)-private. Let εL be the supremum such thatR : X →Y is not (εL,δ)-private.
We will attempt to find a bound on εL; if R is not (εL,δ)-differentially private, there exist Y ⊂ Y and
x,x′ ∈ X such that

P

[
R(x′) ∈ Y

]
> eεL ·P [R(x) ∈ Y ] + δ

For brevity, define p := P [R(x) ∈ Y ] and p′ := P [R(x′) ∈ Y ] so that we have

p′ > eεL · p+ δ (4.4)

We will show that if εL is too large, then (4.4) will imply that P is not (ε,δ)-differentially private, which
contradicts our assumption. To this end, define the setW := {W ∈ Yn | ∃i wi ∈ Y }. Define two datasets
~x ∼ ~x ′ as

~x := (x, . . . ,x︸ ︷︷ ︸
n times

) and ~x ′ := (x′ , x, . . . ,x︸ ︷︷ ︸
n−1 times

)
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Because P is (ε,δ)-differentially private

P

[
(S ◦Rn)(~x ′) ∈W

]
≤ eε ·P

[
(S ◦Rn)(~x) ∈W

]
+ δS (4.5)

Now we have

P

[
(S ◦Rn)(~x) ∈W

]
= P

S(R(x), . . . ,R(x)︸           ︷︷           ︸
n times

) ∈W


= P

(R(x), . . . ,R(x)︸           ︷︷           ︸
n times

) ∈W

 (W is symmetric)

= P [∃i R(x) ∈ Y ] ≤ n ·P [R(x) ∈ Y ] (Union bound)

= np

where the second equality is because the set W is closed under permutation, so we can remove the
random permutation S without changing the probability. Similarly, we have

P

[
(S ◦Rn)(~x′) ∈W

]
= P

(R(x′),R(x) . . . ,R(x)︸          ︷︷          ︸
n−1 times

) ∈W


≥ P

[
R(x′) ∈ Y

]
= p′

> eεL · p+ δ (By (4.4))

Now, plugging the previous two inequalities into (4.5), we have

eεL · p+ δ < P

[
(S ◦Rn)(~x ′) ∈W

]
≤ eε ·P

[
(S ◦Rn)(~x) ∈W

]
≤ eε ·np+ δ

By rearranging and canceling terms in the above we obtain the conclusion

εL ≤ ε+ lnn

Therefore Rmust satisfy (ε+ lnn,δ)-differential privacy.

Given the above lemma, we can invoke any lower bound that holds for (ε+lnn,δ)-local privacy. Ghazi
et al. obtain such a lower bound for histograms and conclude the following:

Theorem 4.2.3 (Ghazi et al. [38]). Any single-message protocol that satisfies (1, o(1/n))-shuffle privacy and
outputs histograms with `∞ error n/10 must have n =Ω( logk

loglogk ).

In contrast, there is a central model algorithm where n = O(1) suffices for the same privacy and
accuracy regimes.
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4.3 Optimality of Amplification Lemmas

In our randomized response protocol PRR, recall that we chose a value of parameter p in order to
satisfy (ε,δ)-shuffle privacy for n users. When ε =Θ(1) and n is sufficiently large, observe thatRRR on its
own offers (εL,0)-privacy where exp(εL) = O(n/ log1/δ). In essence, the shuffling “amplifies” the poor
but existing privacy guarantees of RRR.

One might wonder whether the shuffler performs similar privacy amplification of other local ran-
domizers. If so, we could easily construct shuffle protocols by simply making different parameter
choices in existing locally private protocols. Balle et al. [11] and Erlingsson et al. [33] present so-called
amplification-by-shuffling lemmas to answer this line of inquiry. Feldman, Talwar, and McMillan [35]
derive the state-of-the-art amplification lemma and apply it to distribution estimation in `2 norm, as well
as stochastic gradient descent.

Lemma 4.3.1 (From [35]). Fix ε > 0, δ ∈ (0,1), and n ∈N. There exists a constant κ such that if local randomizer

R : X → Y is εL-differentially private for εL < ln
(
κ ·

(
eε−1
eε+1

)2
· n
ln(1/δ)

)
, then any shuffle protocol using R is

(ε,δ)-differentially private for n users.

Observe that the above lemma demands an upper bound on εL(equivalently, eεL). A natural line
of inquiry is to determine how much this bound can be loosened, or if it is already optimal. Lemma
4.2.2 immediately implies that no amplification can guarantee (ε,δ)-shuffle privacy for n users if the
randomizer does not satisfy (ln(eεn),δ)-local privacy. Combined with Lemma 4.3.1, we see that the
optimal bound on eεL has to be linear in n.

We derive another bound on εL by considering, again, the specific case of randomized response.

Claim 4.3.2. For any ε > 0, 0 < δ < 2/5, and n ∈ N, let εL := ln
(
2(eε +1) · n

ln(1/δ)

)
. There exists a choice of

parameter p where the local randomizerRRR satisfies εL-local privacy but the shuffle protocol PRR does not satisfy
(ε,δ)-shuffle privacy for n users. Consequently, no amplification lemma can obtain (ε,δ)-shuffle privacy from a
generic εL-locally private randomizer.

This result means that the n
ln(1/δ) term in Lemma 4.3.1 is necessary.

Proof. To streamline this proof, we will change the parameterization of randomized response. Specificially,
we will use q = p/2 to denote the probability that RRR(x) = 1 − x (and 1 − q for the probability that
RRR(x) = x). Note that RRR satisfies ln 1

q -differential privacy on its own.
Consider the inputs ~x = (0,0, . . . ,0) and ~x ′ = (1,0, . . . ,0). Let Y denote the event where the shuffler

outputs n copies of 0. From the independence of randomized response, observe that

P

[
(S ◦RnRR)(~x) ∈ Y

]
= (1− q) · (1− q)n−1

P

[
(S ◦RnRR)(~x

′) ∈ Y
]
= q · (1− q)n−1

We express one probability in terms of the other. In particular, we derive an equality involving a
multiplicative term and an additive δ term:

P

[
(S ◦RnRR)(~x) ∈ Y

]
= (1− 2q) · (1− q)n−1 +P

[
(S ◦RnRR)(~x

′) ∈ Y
]

=
(
(1− 2q) · (1− q)n−1 − δ+P

[
(S ◦RnRR)(~x

′) ∈ Y
])
+ δ

=

 (1− 2q) · (1− q)n−1 − δ
P

[
(S ◦RnRR)(~x ′) ∈ Y

] +1

 ·P [
(S ◦RnRR)(~x

′) ∈ Y
]
+ δ

=
(
(1− 2q) · (1− q)n−1 − δ

q · (1− q)n−1
+1

)
·P

[
(S ◦RnRR)(~x

′) ∈ Y
]
+ δ (4.6)
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Taking q = 1
2(eε+1)n ln

1
δ , we will show that

(1− 2q) · (1− q)n−1 − δ > (eε − 1) · q · (1− q)n−1. (4.7)

This will imply (4.6) is larger than eε ·P
[
(S ◦RnRR)(~x

′) ∈ Y
]
+ δ; shuffling the messages of randomized

response with parameter q does not yield an (ε,δ)-differentially private algorithm.
Notice that our upper bound on δ implies δ < exp(− n

2n−1 ) which can be rewritten as ln(1/δ)
n+ln(1/δ) >

1
2n .

Thus we have that

q <
1

eε +1
· ln(1/δ)
n+ ln(1/δ)

which can be rewritten as

1
n
ln

1
δ
>

(eε +1)q
1− (eε +1)q

≥ ln
(
1+

(eε +1)q
1− (eε +1)q

)
= ln

(
1

1− (eε +1)q

)
Multiplying both sides by n and raising e to both sides gives us

δ < (1− (eε +1)q)n

< (1− (eε +1)q)(1− q)n−1

It is easy to verify that this is equivalent to (4.7).
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[9] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. Differentially private summation with
multi-message shuffling. arXiv preprint arXiv:1906.09116, 2019.
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Chapter A

Appendix

A.1 Miscellaneous Proofs

In this section, we provide proofs for some technical lemmas.

Lemma A.1.1 (Restatement of Lemma 1.3.10). If local randomizer R : X → Y is (ε,δ)-differentially private,
then there is a local randomizer R′ that is (2ε,0)-differentially private such that

∀x ∈ X dTV(R(x),R′(x)) ≤ δ

Proof. Fix an arbitrary element x ∈ X . We define R′(x) to have the same distribution as R(x).
For any other x ∈ X , a lemma of Kairouz, Oh, and Viswanath [48]1 implies that there exists a tuple of

distributions (R̃x,x0 ,R̃x,x1 ,R̃x,x⊥ ,R̃
x,x
> ) where

R(x) =
(
eε(1− δ)
1 + eε

)
R̃x,x0 +

( 1− δ
1+ eε

)
R̃x,x1 + δR̃x,x⊥

R(x) =
( 1− δ
1+ eε

)
R̃x,x0 +

(
eε(1− δ)
1 + eε

)
R̃x,x1 + δR̃x,x>

With this context, we define R′(x) to be the distribution

R′(x) :=
(
eε(1− δ)
1 + eε

)
R̃x,x0 +

( 1− δ
1+ eε

)
R̃x,x1 + δR̃x,x> .

By construction, we have
∀x ∈ X dTV(R(x),R′(x)) ≤ δ

Also by construction, we have

∀R ⊆R e−ε ≤ P [R′(x) ∈ R]
P [R′(x) ∈ R]

≤ eε

which implies that, for every pair x,x′ ∈ X , we have

∀R ⊆R P [R′(x) ∈ R]
P [R′(x′) ∈ R]

≤ e2ε,

as desired.
1See also Murtagh and Vadhan [52, Lemma 3.2] for the precise form we use.
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Lemma A.1.2 (Restatement of Lemma 1.3.7). Let f : X n→Z be a 1-sensitive function and fix any δ < 2e−9.
For any m ∈N and p ∈ (0,1), letMf ,m,p denote the algorithm that samples η ∼ Bin(m,p) and outputs f (~x) + η.
If mmin(p,1− p) > 13ln 2

δ ,Mf ,m,p is (ε(m,p),δ)-differentially private, where

ε(m,p) := ln

1+
√

13ln 2
δ

mmin(p,1− p)

 <
√

13ln 2
δ

mmin(p,1− p)
.

Proof. The bulk of this proof will argue thatMf ,m,p is (ε(m,p),δ)-differentially private, where

ε(m,p) := ln

1+
√

13ln 2
δ

mp

 <
√

13ln 2
δ

mp
.

This is sufficient to complete the proof whenever p ≤ 1/2. To handle the other case, we also will argue
that privacy ofMf ,m,p follows from privacy ofMf ,m,1−p.

Fix neighboring datasets ~x ∼ ~x ′ . For any setW ⊂Z and integer z, letW −z denote the set {w−z |w ∈W }.
Using this notation, W − f (~x) contains exactly those values η must take in order forMf ,m,p(~x) ∈W . Also
note that |W − f (~x)| = |W − f (~x ′)|. In fact, there is a bit b ∈ {±1} and a bijection between W − f (~x), W − f (~x ′)
such that w′ = w − b for each w,w′ in the bijection.

Define u :=
√
3mp ln 2

δ and Iu := [bmp−uc,dmp+ue]. Becausemp > 3ln(2/δ), a Chernoff bound implies

that P

η∼Bin(m,p)
[η < Iu] < δ. We use this to decompose P

[
Mf ,m,p(~x) ∈W

]
:

P

[
Mf ,m,p(~x) ∈W

]
= P

[
η ∈ Iu ∩ (W − f (~x))

]
+P

[
η ∈ (W − f (~x))/Iu

]
≤ P

[
η ∈ Iu ∩ (W − f (~x))

]
+ δ (A.1)

We define I ′u := {v − b | v ∈ Iu}. We rewrite the above using this interval:

(A.1) =
(
P

[
η ∈ Iu ∩ (W − f (~x))

]
P

[
η ∈ I ′u ∩ (W − f (~x ′))

] ) ·P[
η ∈ I ′u ∩ (W − f (~x ′))

]
+ δ

≤
(
P

[
η ∈ Iu ∩ (W − f (~x))

]
P

[
η ∈ I ′u ∩ (W − f (~x ′))

] ) ·P [
Mf ,m,p(~x

′) ∈W
]
+ δ

=
( ∑

r∈Iu∩(W−f (~x))P [η = r]∑
r ′∈I ′u∩(W−f (~x ′))P [η = r ′]

)
·P

[
Mf ,m,p(~x

′) ∈W
]
+ δ

Now it remains to show that the ratio in the above expression is at most 1+

√
13ln 2

δ
mp .

Note that, by construction, there is a bijection between every r ∈ Iu ∩ (W − f (~x)) and every r ′ ∈
I ′u ∩ (W − f (~x ′)) such that r ′ = r − b. As a consequence, it will suffice to bound the ratios P[η=r+1]

P[η=r] and
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P[η=r]
P[η=r+1] for all r ∈ [mp −u − 1,mp+u]. Notice that mp > 13ln 2

δ and δ < 2e−9 imply that u >
√
27 · 13.

P [η = r +1]
P [η = r]

=
p

1− p
· m− r
r +1

(η ∼ Bin(m,p))

≤
p

1− p
·
m(1− p) +u +1

mp −u
(r ≥mp −u − 1)

=
p

1− p
·
u2 · 1−p

3p ln(2/δ) +u +1

u2/(3ln 2
δ )−u

=
u2 · 1−p

3ln(2/δ) + (u +1)p

u2 · 1−p
3ln(2/δ) −u(1− p)

=
u(1− p) + 3(1 + 1

u )p ln
2
δ

u(1− p)− 3(1− p) ln 2
δ

= 1+
3ln 2

δ +
3p
u ln 2

δ

u − 3(1− p) ln 2
δ

< 1+
3(1+1/

√
27 · 13)ln 2

δ√
3mp ln 2

δ − 3ln
2
δ

(u >
√
27 · 13 and p ∈ (0,1))

< 1+
3(1+1/

√
27 · 13)ln 2

δ√
4
5mp ln

2
δ

< 1+

√
13ln 2

δ

mp

The inequality
√
3mp ln 2

δ −3ln
2
δ >

√
4
5mp ln

2
δ comes from mp > 13ln 2

δ . We bound the second ratio using
symmetric steps:

P [η = r]
P [η = r +1]

=
1− p
p
· r +1
m− r

(η ∼ Bin(n,p))

≤
1− p
p
·
mp+u +1
m(1− p)−u

(r ≤mp+u)

=
1− p
p
·
u2/(3ln 2

δ ) +u +1

u2 · 1−p
3p ln(2/δ) −u

=
u2 · 1−p

3ln(2/δ) + (u +1)(1− p)

u2 · 1−p
3ln(2/δ) −up

=
u(1− p) + 3(1 + 1

u )(1− p) ln
2
δ

u(1− p)− 3p ln 2
δ

= 1+
3ln 2

δ +
3(1−p)
u ln 2

δ

u − 3p ln 2
δ

< 1+
3(1+1/

√
27 · 13)ln 2

δ√
3mp ln 2

δ − 3ln
2
δ

(u >
√
27 · 13 and p ∈ (0,1))

< 1+
3(1+1/

√
27 · 13)ln 2

δ√
4
5mp ln

2
δ

< 1+

√
13ln 2

δ

mp

Now we argue that privacy of Mf ,m,p follows from privacy of Mf ,m,1−p. Fix any pair ~x ∼ ~x ′ and
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W ⊆Z.

P

[
Mf ,m,p(~x) ∈W

]
= P

η∼Bin(m,p)

[
η ∈W − f (~x)

]
= P

η∼Bin(m,1−p)

[
m− η ∈W − f (~x)

]
(Symmetry)

= P

η∼Bin(m,1−p)

[
η ∈ −W + (f (~x) +m)

]
≤ eε · P

η∼Bin(m,1−p)

[
η ∈ −W + (f (~x ′) +m)

]
+ δ

= eε · P

η∼Bin(m,1−p)

[
m− η ∈W − f (~x ′)

]
+ δ

= eε ·P
[
Mf ,m,p(~x

′) ∈W
]
+ δ

A.2 Equating the Shuffle and Secure Aggregation Models

We state the equivalence as two lemmas that losslessly translate between the models.

Lemma A.2.1. Fix any finite set Y , ∅ and let d = |Y |. For any shuffle protocol P = (R,A) using message space
Y , there is a secure aggregation protocol P̂ = (R̂, Ŝd,≥0,Â) such that

• P is (ε̃, δ̃, τ)-robustly private for n users if and only if P̂ is (ε̃, δ̃, τ)-robustly private for n users.

• On any input ~x ∈ X n, P̂ (~x) is identically distributed with P (~x).

Lemma A.2.2. Fix any finite set Y , ∅ and let d = |Y |. For any secure aggregation protocol P̂ = (R̂, Ŝd,≥0,Â),
there is a shuffle protocol P = (R,A) using message space Y such that

• P̂ is (ε̃, δ̃, τ)-robustly private for n users if and only if P is (ε̃, δ̃, τ)-robustly private for n users.

• On any input ~x ∈ X n, P (~x) is identically distributed with P̂ (~x).

Proof of Lemma A.2.1. We assume some bijection between y ∈ Y and t[y] ∈ [d]. Let R̂(x) be the algorithm
that executes R(x) and reports the histogram of message values. That is, if the message y occurs 5 times,
the t[y]-th location in the message vector is the integer 5.

Let F : Y ∗→Z
d
≥0 be the algorithm which, on input ~y, reports the histogram of the messages ~y. On any

input ~x, we will argue that (F ◦S ◦Rγn)(~x) is identically distributed with (Ŝd,≥0 ◦ R̂γn)(~x). So when P is
robustly shuffle private, P̂ is also robustly shuffle private by post-processing (Fact 1.3.5).

For any vector ~h ∈Zd
≥0,

P

[
(F ◦S ◦Rγn)(~x) =~h

]
= P

[
(F ◦Rγn)(~x) =~h

]
(S only permutes)

= P

[
(Ŝd,≥0 ◦ R̂γn)(~x) =~h

]
(Defn. of F, Ŝ)

Let F̂ :Zd
≥0→Y ∗ be the algorithm which, on input ~h, samples a random permutation of messages ~y

such that the frequency of any message y is ht[y]. On any input ~x, we will argue that (F̂ ◦ Ŝd,≥0 ◦ R̂γn)(~x) is
identically distributed with (S ◦Rγn)(~x). So when P̂ is robustly shuffle private, P is also robustly shuffle
private, again by post-processing.

Let p(~y,m) be the function that reports all possible ways of placing the balls y1, y2, . . . into m bins. That
is, ~p ∈ p(~y,m) iff pi is a subsequence of ~y, all pi are disjoint, and ~y can be formed by concatenating and
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permuting p1, . . . ,pm. For any vector ~y ∈ Y ∗,

P

[
(F̂ ◦ Ŝ ◦ R̂γn)(~x) = ~y

]
= P

[
F̂(F(~y)) = ~y

]
·P

[
(Ŝ ◦ R̂γn)(~x) = F(~y)

]
=

1
|~y|!
·

∑
~p∈p(|~y|,γn)

γn∏
i=1

P [R(xi) = pi]

= P

[
(S ◦Rγn)(~x) = ~y

]
If we define the analyzer Â such that Â(~h) :=A(F̂(~h)), then (Â◦ Ŝ ◦R̂n) = (A◦S ◦Rn) which completes

the proof.

Proof of Lemma A.2.2. The proof is symmetric to the preceding one. LetR(x) be the algorithm that executes
R̂(x) and then outputs a uniformly random vector of messages whose frequencies obey the histogram.
That is, if the t[y]-th coordinate is 5, then the randomizer reports the message y 5 times. We use the same
algorithms F, F̂ and define A(~y) := Â(F(~y)).

A.3 Proofs for Distinct Elements Protocol PDE
Lemma (Restatement of Lemma 2.4.6). Fix any integers m ≤ n and real number p∗ ∈ [0,1/2]. If we assign

p← 1−(1−2p∗)1/n
2 and sample i.i.d. X1, . . . ,Xm ∼ Ber(p), then the sum X :=

∑m
i=1Xi (mod 2) is distributed as

Ber
(
1− (1− 2p∗)m/n

2

)
.

Proof. For all i ∈ [m], define Yi := 1− 2Xi ∈ {±1}, and define Y :=
∏m
i=1Yi . Then

P [X = 1] = P [Y = −1] = 1−E [Y ]
2

.

Now, by independence, we rewrite

E [Y ] =
m∏
i=1

E [Yi] =
m∏
i=1

(1− 2E [Xi]) = (1− 2p)m

Thus, we have that

P [X = 1] =
1− (1− 2p)m

2

=
1− (1− (1− (1− 2p∗)1/n))m

2

=
1− (1− 2p∗)m/n

2

Lemma A.3.1. For any ε > 0 and γ ∈ (0,1],

ln
(

1
1− (1− e−ε)γ

)
≤ ε+ ln(1/γ)

and when ε ∈ (0,1),

ln
(

1
1− (1− e−ε)γ

)
≤ ε

γ

γ
.
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Proof. By Bernoulli’s inequality, (1− e−ε)γ ≤ 1−γe−ε which implies that

ln
(

1
1− (1− e−ε)γ

)
≤ ln

(
1

1− (1−γe−ε)

)
= ε+ ln(1/γ)

We move on to the regime where ε ∈ (0,1). Here, we will prove that 1 − e−ε ≤
(
1− e−εγ /γ

)1/γ
from

which the desired bound follows by substitution. To prove this observation, we first apply the substitution
µ = 1/γ ∈ [1,∞):

1− e−ε ≤
(
1− e−µε

1/µ
)µ
. (A.2)

Notice that equality holds at µ = 1 for all ε ∈ (0,1]. Let f (ε,µ) be the expression on the RHS of Equation
A.2. To prove our observation, it suffices to show that f is non-decreasing in µ for every ε ∈ (0,1]. We
take the first derivative:

∂f (ε,µ)
∂µ

= f (ε,µ) · ∂
∂µ

(
µ · ln

(
1− e−µε

1/µ
))

= f (ε,µ) ·
(
ln

(
1− e−µε

1/µ
)
+
ε1/µ · (µ+ ln(1/ε))

eµε
1/µ − 1

)
.

Let g(ε,µ) :=
(
eµε

1/µ − 1
)
· ln

(
1− e−µε1/µ

)
+ ε1/µ · (µ+ ln(1/ε)) . Then

∂f (ε,µ)
∂µ

=
f (ε,µ)

eµε
1/µ − 1

· g(ε,µ).

To show that ∂
∂µ f (ε,µ) ≥ 0, it suffices to show that g(ε,µ) ≥ 0 for all ε ∈ (0,1] and µ ≥ 1 since f (ε,µ) > 0

and eµε
1/µ − 1 > 0 for all ε ∈ (0,1] and µ ≥ 1. To show that g(ε,µ) ≥ 0, we show that g(ε,µ) ≥ 0 near the

boundary of the domain (i.e. as ε→ 0+ and at ε = 1) for every µ ≥ 1 and that g(ε,µ) approaches this
boundary from the proper direction as a function of ε. Now,

∂g(ε,µ)
∂ε

= ε(1/µ)−1 ·
(
eµε

1/µ
ln

(
1− e−µε

1/µ
)
+
ln(1/ε)
µ

+1
)
.

Let h(ε,µ) := µeµε
1/µ

ln
(
1− e−µε1/µ

)
+ ln(1/ε) +µ. Then

∂g(ε,µ)
∂ε

=
ε(1/µ)−1

µ
· h(ε,µ)

and

∂h(ε,µ)
∂ε

= µeµε
1/µ
ε(1/µ)−1

(
ln

(
1− e−µε

1/µ
)
+

1

eµε
1/µ − 1

)
− 1
ε

≤
µε(1/µ)−1

eµε
1/µ − 1

− 1
ε

(ln(1 + x) ≤ x for x > −1)

≤ 0. (ex − 1 ≥ x for x ∈R)

Thus, h is non-increasing in ε. Now, for all ε′ ∈ (0,1] and µ ≥ 1, we perform case analysis:
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• If h(ε′ ,µ) ≥ 0, then ∂
∂εg(ε

∗,µ) ≥ 0 at every ε∗ ∈ (0, ε′] which implies g is non-decreasing in ε on (0, ε′].
Thus,

g(ε′ ,µ) ≥ lim
ε→0+

g(ε,µ)

= lim
ε→0+

ln
(
1− e−µε1/µ

)
(
eµε

1/µ − 1
)−1 + lim

ε→0+
ε1/µµ+ lim

ε→0+

ln(1/ε)
ε−1/µ

= lim
ε→0+

ε(1/µ)−1
(
eµε

1/µ − 1
)−1

−ε(1/µ)−1 · eµε1/µ
(
eµε

1/µ − 1
)−2 + lim

ε→0+

−1/ε
−ε−1/µ/(µε)

(L’Hôpital’s rule)

= 0.

• If h(ε′ ,µ) < 0, then ∂
∂εg(ε

∗,µ) ≤ 0 at every ε∗ ∈ [ε′ ,1] which implies g is non-increasing in ε on [ε′ ,1].
Thus,

g(ε′ ,µ) ≥ g(1,µ)
= (eµ − 1) · ln(1− e−µ) +µ
≥ −1+µ (ln(1 + x) ≥ x

x+1 for x > −1)

≥ 0.

Thus, g(ε,µ) ≥ 0 on the desired domain which concludes the proof.

A.4 Proofs for Uniformity Testing Protocol PUT
Here, we provide proofs for the technical claims made in the proof of Theorem 2.5.3.

Claim A.4.1 (Restatement of Claim 2.5.4). Sample n ∼ Pois(m) and ~x ∼ Un. There is a constant κ such that
when m > κd1/2/α2, the following inequalities hold in an execution of PUT(~x):

P

[
Z >

3α2m
250

]
< 1/40

P

A > d2λ4m
+

√
20d3λ2

m2

 < 1/40

P

C < −
√

10d3λ
m2

 < 1/40

Proof. Recall ηj is the noise introduced by PSYM to the count cj (~x). From Claim 2.1.7, the first four
moments are 0,λ/4,0,3λ2/10+7λ/40.

The expectation of A immediately follows from linearity and the second moment of ηj :

E [A] =
d
m

d∑
j=1

E

[
η2j

]
=
d2λ
4m

We derive the expectation of B in a similar way:

E [C] =
d
m

d∑
j=1

E

[
ηj

]
= 0
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The variance calculations follow essentially the same recipe:

Var[A] =
d2

m2

d∑
j=1

Var
[
η2j

]
(Independence)

=
d2

m2

d∑
j=1

(
E

[
η4j

]
−E

[
η2j

]2)
=
d3

m2

(
3λ2

10
+
7λ
40
− λ

2

16

)
≤ d

3λ2

2m2 (λ > 1)

Var[C] =
d2

m2

d∑
j=1

Var
[
ηj

]
(Independence)

=
d3λ

4m2

As observed in [6], the analysis by Acharya Daskalakis and Kamath [3] implies

E [Z] ≤ α
2m

500

Var[Z] ≤ α4m2

500000

Chebyshev’s inequality completes the proof.

Claim A.4.2 (Restatement of 2.5.6). Sample n ∼ Pois(m) and ~x ∼Dn where ‖D−U‖TV > α. There is a constant
c such that when m > cd1/2/α2, the following inequalities hold in an execution of PUT(~x):

P

[
Z <

α2m
15

]
< 1/30

P

A < d2λ4m
−
√

15d3λ2

m2

 < 1/30

P

C >
√

15d3λ
2m2

 < 1/30

Proof. As with the prior proof, we use the analysis of [3] to derive

E [Z] ≥ α
2m
5

(A.3)

Var[Z] ≤ E [Z]2

100
(A.4)

By Chebyshev’s inequality, we have that the following holds with probability ≥ 29/30:

Z ≥ E [Z]−

√
E [Z]2

100
· 30

= (1−
√
3/10)E [Z]

≥ (1−
√
3/10)

α2m
5

>
α2m
15
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Note that the expressions for E [A],E [C],Var[A],Var[C] we obtained in the previous claim are true
regardless of the identity of D. Thus, they hold here as well. Chebyshev’s inequality again completes the
proof.

Claim A.4.3 (Restatement of Claim 2.5.5). Let η1, . . . ,ηd be independent random variables where each ηj is
symmetrically distributed over the set {. . . ,−3/2,−1,−1/2,0,1/2,1,3/2, . . . } with mean zero. For any coefficients
a1, . . . , ad ∈R, the random variable

∑d
j=1ηj · aj is symmetrically distributed with mean zero.

Proof. By linearity of expectation, the mean of
∑d
j=1ηj · aj is zero. Next we argue that the distribution of

each term ηj · aj is symmetric: for any v ∈R,

P

[
ηj · aj = v

]
= P

[
ηj = v/aj

]
= P

[
ηj = −v/aj

]
(Symmetry)

= P

[
ηj · aj = −v

]
Now it will suffice to prove the following: if D,D′ are symmetric distributions over countable supports

T ,T ′ , their convolution is symmetric. For any v ∈R,

P

t∼D,t′∼D′
[
t + t′ = v

]
=

∑
u∈T

P [t = u] ·P
[
t′ = v −u

]
=

∑
u∈T

P [t = −u] ·P
[
t′ = −(v −u)

]
= P

[
t + t′ = −v

]

A.5 Deferred Lower Bound Proofs

In this section, we prove the lower bounds for hypothesis testing, sparse mean estimation, and parity
release.

A.5.1 Simple Hypothesis Testing

Theorem A.5.1 (Restatement of Theorem 3.3.14). If Q is an (ε,δ)-internally private algorithm that solves
d-wise simple hypothesis testing with error α and δ logd/δ� α2ε2/d, then its sample complexity is n =Ω(

√
d/αε).

Proof. Consider the set of distributions {U}∪Dd,1,α . Note that this is a family of 2d+1 distributions. From
Fact 3.3.8, its size is 2d +1. Later in this section, we will prove the following:

Claim A.5.2. For any D ,D′ ∈ {U} ∪Dd,1,α , dTV(D,D′) ≥ α.

The upshot is that {U} ∪Dd,1,α is a valid set of distributions for (2d +1)-wise hypothesis testing. We
now argue that the accuracy of M for this problem instance implies that we can invoke Theorem 3.3.11.

To do so, let Dd,L,B,α denote a distribution chosen uniformly at random from Dd,1,α . We show that the
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total variation distance between Q(Un) and Q(Dn
d,L,B,α) is at least some positive constant.

dTV(Q(Un),Q(Dn
d,L,B,α))

= max
D⊆{U}∪Dd,k,α

∣∣∣∣P [Q(Un) ∈ D]−P
[
Q(Dn

d,L,B,α) ∈ D
]∣∣∣∣

≥ P [Q(Un) ∈ {U}]−P
[
Q(Dn

d,L,B,α) ∈ {U}
]

≥ P [Q(Un) ∈ {U}]− 1
100

≥ 99
100
− 1
100

=
49
50

To obtain the second inequality, we first observe that Dd,t,b,α ,U for every t,b so U would be an incorrect
output. Then we use the fact that Q solves simple hypothesis testing: it is incorrect with probability at
most 1/100. The same reasoning yields the third inequality.

From Theorem 3.3.11, we conclude that n =Ω

(
1

ε‖Dd,1,α‖∞→2

)
=Ω

(√
d/αε

)
. This lower bound holds for

a family of 2d +1 distributions, so the claimed result follows by rescaling d.

The next theorem adapts our proof to the robust shuffle privacy setting:

Theorem A.5.3 (Restatement of Theorem 3.3.15). If D is an (ε,δ)-robustly shuffle private protocol that solves
d-wise simple hypothesis testing with error α and δ logd/δ� α2ε2/d, then its sample complexity is n =Ω(

√
d/αε).

Proof. As before, let Dd,L,B,α denote a distribution chosen uniformly at random from Dd,1,α . Let Π denote
an algorithm in the shuffle model that solves (2d +1)-wise simple hypothesis testing with accuracy 2α/9.

Let QD denote the (ε,δ)-internally private algorithm guaranteed by Lemma 3.2.2. We will lower
bound the total variation distance between QD(Un/3) and QD(Dn/3

d,L,B,α).

dTV(QD(Un/3),QD(Dn/3
d,L,B,α))

≥ P

[
QD(Un/3) ∈ {U}

]
−P

[
QD(Dn/3

d,L,B,α) ∈ {U}
]

≥ P [Π(Un) ∈ {U}]−P
[
Π(Dn

d,L,B,2α/9) ∈ {U}
]
− 1
6

(Lemma 3.2.2)

≥ 49
50
− 1
6
=
61
75

The third inequality comes from repeating the analysis in the proof of Theorem 3.3.14. Since QD is an
(ε,δ)-internally private algorithm such that

dTV(QD(Un/3),QD(Dn/3
d,L,B,α))

is at least a positive constant, we invoke Theorem 3.3.11 to conclude that n = Ω(
√
d/αε). The claimed

theorem follows by rescaling α and d.

Proof of Claim A.5.2. We first compute the distance between the uniform distribution and Dd,{j},b,α (for
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generic j ∈ [d] and b ∈ {±1}):

dTV(U,Dd,{j},b,α)

=
1
2
‖U−Dd,{j},b,α‖1

=
1
2

 ∑
x∈X ,xj=b

|2−d − (1 + 2α)2−d |+
∑

x∈X ,xj=−b
|2−d − (1− 2α)2−d |


=
1
2

(
α · 2−d+1 · 2d−1 +α · 2−d+1 · 2d−1

)
= α

For any j, j ′ ∈ [d] and any b,b′ ∈ {±1}, we calculate the distance dTV(Dd,{j},b,α ,Dd,{j ′},b′ ,α) via case
analysis. When j , j ′ ,

dTV(Dd,{j},b,α ,Dd,{j ′},b′ ,α)

=
1
2
‖Dd,{j},b,α −Dd,{j ′},b′ ,α‖1

=
1
2
·
∑
xj=b

xj′ =b
′

|(1 + 2α)2−d − (1 + 2α)2−d |+ 1
2
·
∑
xj,b

xj′ ,b
′

|(1− 2α)2−d − (1− 2α)2−d |

+
1
2
·
∑
xj=b

xj′ ,b
′

|(1 + 2α)2−d − (1− 2α)2−d |+ 1
2
·
∑
xj,b

xj′ =b
′

|(1− 2α)2−d − (1 + 2α)2−d |

=
1
2
·
∑
xj=b

xj′ ,b
′

α · 2−d+2 + 1
2
·
∑
xj,b

xj′ =b
′

α · 2−d+2

=
1
2

(
α · 2−d+2 · 2d−2 +α · 2−d+2 · 2d−2

)
= α

When j = j ′ but b , b′ , we take b = +1 and b′ = −1 without loss of generality.

dTV(Dd,{j},+1,α ,Dd,{j ′},−1,α)

=
1
2
‖Dd,{j},+1,α −Dd,{j ′},−1,α‖1

=
1
2

 ∑
xj=+1

|(1 + 2α)2−d − (1− 2α)2−d |+
∑
xj=−1

|(1− 2α)2−d − (1 + 2α)2−d |


=
1
2

(
α · 2−d+2 · 2d−1 +α · 2−d+2 · 2d−1

)
= 2α

A.5.2 Sparse Mean Estimation

Theorem A.5.4 (Restatement of Theorem 3.3.17). If Q is an (ε,δ)-internally private algorithm that solves
(d,1,α)-sparse mean estimation and δ logd/δ� α2ε2/d, then its sample complexity is n =Ω(

√
d/αε).

Proof. As before, let Dd,L,B,α denote a distribution chosen uniformly at random from Dd,1,α . By construc-
tion, the mean of this distribution is 1-sparse, namely it is B ·~eL wehre ~eL is the L-th standard basis vector.
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We show that the total variation distance between Q(Un) and Q(Dn
d,L,B,α) is at least a constant. This time,

we argue that the former is more likely to output a “small” vector than the latter. Specifically,

dTV(Q(Un),Q(Dn
d,L,B,α))

≥ P [‖Q(Un)‖∞ ≤ α]−P
[
‖Q(Dn

d,L,B,α)‖∞ ≤ α
]

= P [‖Q(Un)−E [U]‖∞ ≤ α]−P
[
‖Q(Dn

d,L,B,α)‖∞ ≤ α
]

(E [U] = ~0)

≥ 99
100
−P

[
‖Q(Dn

d,L,B,α)‖∞ ≤ α
]

≥ 99
100
−P

[
‖Q(Dn

d,L,B,α)−E
[
Dd,L,B,α

]
‖∞ > α

]
(‖E

[
Dd,L,B,α

]
‖∞ = 2α)

≥ 99
100
− 1
100

=
49
50

From Theorem 3.3.11, we conclude that n =Ω
(√
d/αε

)
.

Theorem A.5.5 (Restatement of Theorem 3.3.18). If D is an (ε,δ)-robustly shuffle private protocol that solves
(d,1,α)-sparse mean estimation and δ logd/δ� α2ε2/d, then its sample complexity is n =Ω(

√
d/αε).

Proof. As before, let Dd,L,B,α denote a distribution chosen uniformly at random from Dd,1,α . Assume Π is
a shuffle-model protocol that solves (d,1,2α/9)-sparse mean estimation. We show that QP distinguishes
between Un/3 and Dn/3

d,L,B,α .

dTV(QP (Un/3),QP (Dn/3
d,L,B,α))

≥ P

[
‖QP (Un/3)‖∞ ≤ 2α/9

]
−P

[
‖QP (Dn/3

d,L,B,α)‖∞ ≤ 2α/9
]

≥ P [‖Π(Un)‖∞ ≤ 2α/9]−P
[
‖Π(Dn

d,L,B,2α/9)‖∞ ≤ 2α/9
]
− 1
6

(Lemma 3.2.2)

≥ 49
50
− 1
6
=
61
75

The third inequality comes from repeating the analysis in the proof of Theorem 3.3.17. As before, we
invoke Theorem 3.3.11 to conclude that n =Ω(

√
d/αε). The claimed theorem follows from rescaling α

and d.

A.5.3 Parity Release

Theorem A.5.6 (Restatement of Theorem 3.3.20). If Q is an (ε,δ)-internally private algorithm that releases

width-k parities with error α and δ log( d≤k)/δ� α2ε2/
( d
≤k

)
, then its sample complexity is n =Ω(

√( d
≤k

)
/αε).

Proof. Analogous to the previous proofs, let Dd,L,B,α denote a distribution chosen uniformly at random
from the family Dd,k,α . We show that the total variation distance between Q(Un) and Q(Dn

d,L,B,α) is at least
a constant. This time, we argue that the former is more likely to output a function bounded by α than the
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latter. Specifically,

dTV(Q(Un),Q(Dn
d,L,B,α))

≥ P

F∼Q(Un)
[∀` ⊆ [d], |`| ≤ k |F(`)| ≤ α]− P

F∼Q(Dn
d,L,B,α)

[∀` ⊆ [d], |`| ≤ k |F(`)| ≤ α]

≥ 99
100
− P

F∼Q(Dn
d,L,B,α)

[∀` ⊆ [d], |`| ≤ k |F(`)| ≤ α] (A.5)

≥ 99
100
− P

F∼Q(Dn
d,L,B,α)

[∀` ⊆ [d], |`| ≤ k |F(`)− 2α| > α]

≥ 99
100
− 1
100

(A.6)

=
49
50

Inequality (A.5) follows from the fact that ∀`,b E

x∼U

[∏
j∈` xj

]
= 0 and the correctness of M. Meanwhile

(A.6) follows from the fact that ∀`,b E

x∼Dd,`,b,α

[∏
j∈` xj

]
= 2αb and the correctness of M. From Theorem

3.3.11, we conclude the claimed lower bound on n.

Theorem A.5.7 (Restatement of Theorem 3.3.21). If D is an (ε,δ)-robustly shuffle private protocol that releases

width-k parities with error α and δ log( d≤k)/δ� α2ε2/
( d
≤k

)
, then its sample complexity is n =Ω(

√( d
≤k

)
/αε).

Proof. Again, let QP denote the (ε,δ)-internally private algorithm given by Lemma 3.2.2. We show that
QP distinguishes between Un/3 and Dn/3

d,L,B,α .

dTV(QP (Un/3),QP (Dn/3
d,L,B,α))

≥ P

F∼QP (Un/3)
[∀` ⊆ [d], |`| ≤ k |F(`)| ≤ 2α/9]− P

F∼QP (Dn/3
d,L,B,α)

[∀` ⊆ [d], |`| ≤ k |F(`)| ≤ 2α/9]

≥ P

F∼Π(Un)
[∀` ⊆ [d], |`| ≤ k |F(`)| ≤ 2α/9]− P

F∼Π(Dn
d,L,B,2α/9)

[∀` ⊆ [d], |`| ≤ k |F(`)| ≤ 2α/9]− 1
6

≥ 49
50
− 1
6
=
61
75

The third inequality comes from repeating the analysis in the proof of Theorem 3.3.20. As before, we
invoke Theorem 3.3.11 to conclude the claimed lower bound on n.
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